期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多源数据和Stacking集成学习的气象干旱监测模型
1
作者 刘航铖 姚宁 +3 位作者 喻绪创 相里江峰 黄喜峰 李勇民 《农业机械学报》 北大核心 2025年第8期107-119,共13页
干旱作为一种具有时空变异性的复合型自然灾害,其频发性和破坏性对社会经济发展和生态系统稳定构成了严重威胁,精确监测干旱事件具有重要现实意义。本研究以陕西省为研究区域,通过整合植被-地表-气候多维干旱因子建立综合特征变量体系,... 干旱作为一种具有时空变异性的复合型自然灾害,其频发性和破坏性对社会经济发展和生态系统稳定构成了严重威胁,精确监测干旱事件具有重要现实意义。本研究以陕西省为研究区域,通过整合植被-地表-气候多维干旱因子建立综合特征变量体系,选取最优气象干旱指数作为目标变量,基于Stacking集成学习与多种机器学习算法构建了陕西省2003—2020年堆叠集成干旱指数(Stacked ensemble drought index,SEDI),同时评估其在气象干旱监测中的适用性。结果表明:气象干旱综合指数(Meteorological drought composite index,MCI)、标准化降水指数(Standardized precipitation index,SPI)与标准化降水蒸散发指数(Standardized precipitation evapotranspiration index,SPEI)在月尺度上变化趋势总体一致,但MCI对干旱事件识别具有更高准确性和灵敏性,选为气象干旱监测模型的目标变量。在3种集成模型与5种单一模型中,基于XGBoost构建的集成模型XGB_(all)在陕西省各区域的监测效果最佳,决定系数R^(2)为0.934~0.945,均方根误差(RMSE)为0.208~0.256。2003—2020年,SEDI与MCI在榆林站、秦都站、石泉站干旱等级一致率分别为87.04%、83.80%、85.65%,2种指数反映的干旱趋势基本一致,且R^(2)均大于0.91,表明SEDI能有效识别不同站点的干旱类型及变化趋势。利用两次典型干旱事件(2005年春季与2015年夏季)进行验证,SEDI在区域尺度干旱监测中具有良好的适用性,其与MCI在空间分布特征上具有较高一致性,不同干旱等级站点比例相似度高,能够较为准确地反映干旱过程的时空演变特征。空间自相关分析表明,陕西省气象干旱呈现显著的空间集聚性,全局莫兰指数为0.69,Z得分为3.58,P<0.001。其中,高-高集聚区主要分布在关中西南部和陕南地区,在这些区域干旱事件的发生频率及强度相对较低。低-低集聚区主要分布在关中东北部和陕北地区,在这些区域干旱事件的发生频率及强度相对较高。研究结果可为生态环境评估与保护、干旱状态监测及预警提供科学指导。 展开更多
关键词 干旱监测 Stacking集成学习 机器学习 遥感 空间自相关 陕西省
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部