期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
范数可微性和Banach空间的一致球覆盖性质
1
作者 商绍强 《数学年刊(A辑)》 CSCD 北大核心 2024年第2期123-140,共18页
在这篇文章中,作者首先给出了范数在集合上一致光滑的定义,而且证明了存在一个l^(∞)的一致球覆盖,使得l^(∞)的范数在球覆盖点是一致光滑的.其次,作者证明了如果(П_(i=1)^(2)X_(i),‖·‖_(p))是一个乘积空间,这里p∈[1,+∞],则存... 在这篇文章中,作者首先给出了范数在集合上一致光滑的定义,而且证明了存在一个l^(∞)的一致球覆盖,使得l^(∞)的范数在球覆盖点是一致光滑的.其次,作者证明了如果(П_(i=1)^(2)X_(i),‖·‖_(p))是一个乘积空间,这里p∈[1,+∞],则存在(П_(i=1)^(2)X_(i),‖·‖_(p))的一个一致球覆盖,使得(П_(i=1)^(2)X_(i),‖·‖_(p))的范数在球覆盖点是一致光滑的当且仅当存在X_(i)的一个一致球覆盖,使得X_(i)的范数在球覆盖点是一致光滑的.最后,作者证明了如果X是一致光滑空间且可分,则存在两个序列{x_(n)}_(n=1)^∞■X和{r_(n)}_(n=1)^(∞)■R,使得:(1)存在{x_(n)}_(n=1)^(∞)的一个子序列{X_(j)}_(j=1)^(∞),使得{‖x_(j)‖^(-1)x_(j)}_(j=1)^(∞)上的每一点都是B(X)的强暴露点;(2)对每个n∈N,‖x_(n)‖^(-1)x_(n)是B(X)的端点;(3)集序列{B(x_(n),r_(n))}_(n=1)^(∞)是X的一个一致球覆盖. 展开更多
关键词 一致光滑集 一致球覆盖 一致光滑空间 乘积空间
在线阅读 下载PDF
矩阵方程X~α+A*X^(-β)A=I的Hermite正定解
2
作者 梁丽 伍国兴 +1 位作者 陈飞 商绍强 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期18-20,共3页
研究了矩阵方程Xα+A*X-βA=I的Hermite正定解的存在性问题。首先,给出矩阵方程有解的充分必要条件,即存在一个Hermite正定阵M,使得矩阵A满足如下的分解:A=(M*M)β2αN;其次,在所得结论的基础上,利用CS分解定理,得到矩阵方程有解的另一... 研究了矩阵方程Xα+A*X-βA=I的Hermite正定解的存在性问题。首先,给出矩阵方程有解的充分必要条件,即存在一个Hermite正定阵M,使得矩阵A满足如下的分解:A=(M*M)β2αN;其次,在所得结论的基础上,利用CS分解定理,得到矩阵方程有解的另一个充分必要条件:存在酉矩阵P、Q以及对角矩阵C>0,D≥0,使得A=P*CβαQDP,其中C2+D2=I,CP=PC,此时方程的解可表示为X=(P*C2 P)1α;最后利用Brouwer不动点定理,证明若‖A‖≤βα+β+(αα+β)阵方程在区间[βα+βI,I]上有解X。 展开更多
关键词 矩阵方程 正定解 CS分解 BROUWER不动点定理
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部