We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditio...We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditional Gaussian optically-pumped AM with that utilizing the flat-top optically-pumped(FTOP) method. Our findings reveal that the FTOP-based approach outperforms the conventional method, exhibiting a larger response, a narrower magnetic resonance linewidth, and a superior low-frequency noise performance. Specifically, the use of FTOP method leads to a 16% enhancement in average sensitivity within 1 Hz–30 Hz frequency range. Our research emphasizes the significance of achieving transverse polarization uniformity in AMs, providing insights for future optimization efforts and sensitivity improvements in miniaturized magnetometers.展开更多
A robust performance evaluation method for vapor cells used in magnetometers is proposed in this work.The performance of the vapor cell determines the sensitivity of the magnetic measurement,which is the core paramete...A robust performance evaluation method for vapor cells used in magnetometers is proposed in this work.The performance of the vapor cell determines the sensitivity of the magnetic measurement,which is the core parameter of a magnetometer.After establishing the relationship between intrinsic sensitivity and the total relaxation rate,the total relaxation rate of the vapor cell can be obtained to represent the intrinsic sensitivity of the magnetometer by fitting the parameters of the magnetic resonance experiments.The method for measurement of the total relaxation rate based on the magnetic resonance experiment proposed in this work is robust and insensitive to ambient noise.Experiments show that,compared with conventional sensitivity measurement,the total relaxation rate affected by magnetic noise below 0.9 n T,pump light frequency noise below 1.5 GHz,pump light power noise below 9%,probe light power noise below 3%and temperature fluctuation of 150±3℃deviates by less than 2%from the noise-free situation.This robust performance evaluation method for vapor cells is conducive to the construction of a multi-channel high-spatial-resolution cardio-encephalography system.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 62303029)the China Postdoctoral Science Foundation (Grant No. 2022M720364)the Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0300500 and 2021ZD0300503)。
文摘We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditional Gaussian optically-pumped AM with that utilizing the flat-top optically-pumped(FTOP) method. Our findings reveal that the FTOP-based approach outperforms the conventional method, exhibiting a larger response, a narrower magnetic resonance linewidth, and a superior low-frequency noise performance. Specifically, the use of FTOP method leads to a 16% enhancement in average sensitivity within 1 Hz–30 Hz frequency range. Our research emphasizes the significance of achieving transverse polarization uniformity in AMs, providing insights for future optimization efforts and sensitivity improvements in miniaturized magnetometers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62173020 and 62103381)。
文摘A robust performance evaluation method for vapor cells used in magnetometers is proposed in this work.The performance of the vapor cell determines the sensitivity of the magnetic measurement,which is the core parameter of a magnetometer.After establishing the relationship between intrinsic sensitivity and the total relaxation rate,the total relaxation rate of the vapor cell can be obtained to represent the intrinsic sensitivity of the magnetometer by fitting the parameters of the magnetic resonance experiments.The method for measurement of the total relaxation rate based on the magnetic resonance experiment proposed in this work is robust and insensitive to ambient noise.Experiments show that,compared with conventional sensitivity measurement,the total relaxation rate affected by magnetic noise below 0.9 n T,pump light frequency noise below 1.5 GHz,pump light power noise below 9%,probe light power noise below 3%and temperature fluctuation of 150±3℃deviates by less than 2%from the noise-free situation.This robust performance evaluation method for vapor cells is conducive to the construction of a multi-channel high-spatial-resolution cardio-encephalography system.