Several major challenges need to be faced for efficient transient multiscale electromagnetic simulations, such as flex- ible and robust geometric modeling schemes, efficient and stable time-stepping algorithms, etc. F...Several major challenges need to be faced for efficient transient multiscale electromagnetic simulations, such as flex- ible and robust geometric modeling schemes, efficient and stable time-stepping algorithms, etc. Fortunately, because of the versatile choices of spatial discretization and temporal integration, a discontinuous Galerkin time-domain (DGTD) method can be a very promising method of solving transient multiscale electromagnetic problems. In this paper, we present the application of a leap-frog DGTD method to the analyzing of the multiscale electromagnetic scattering problems. The uniaxial perfect matching layer (UPML) truncation of the computational domain is discussed and formulated in the leap-frog DGTD context. Numerical validations are performed in the challenging test cases demonstrating the accuracy and effectiveness of the method in solving transient multiscale electromagnetic problems compared with those of other numerical methods.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61301056 and 11176007)the Sichuan Provincial Science and Technology Support Program,China(Grant No.2013HH0047)+1 种基金the Fok Ying Tung Education Foundation,China(Grant No.141062)the"111"Project,China(Grant No.B07046)
文摘Several major challenges need to be faced for efficient transient multiscale electromagnetic simulations, such as flex- ible and robust geometric modeling schemes, efficient and stable time-stepping algorithms, etc. Fortunately, because of the versatile choices of spatial discretization and temporal integration, a discontinuous Galerkin time-domain (DGTD) method can be a very promising method of solving transient multiscale electromagnetic problems. In this paper, we present the application of a leap-frog DGTD method to the analyzing of the multiscale electromagnetic scattering problems. The uniaxial perfect matching layer (UPML) truncation of the computational domain is discussed and formulated in the leap-frog DGTD context. Numerical validations are performed in the challenging test cases demonstrating the accuracy and effectiveness of the method in solving transient multiscale electromagnetic problems compared with those of other numerical methods.