期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进U型神经网络的脑出血CT图像分割 被引量:4
1
作者 胡敏 周秀东 +2 位作者 黄宏程 张光华 陶洋 《电子与信息学报》 EI CSCD 北大核心 2022年第1期127-137,共11页
针对脑出血CT图像病灶部位的多尺度性导致分割精度较低的问题,该文提出一种基于改进U型神经网络的图像分割模型(AU-Net+)。首先,该模型利用U-Net中的编码器对脑出血CT图像特征编码,将提出的残差八度卷积(ROC)块应用到U型神经网络的跳跃... 针对脑出血CT图像病灶部位的多尺度性导致分割精度较低的问题,该文提出一种基于改进U型神经网络的图像分割模型(AU-Net+)。首先,该模型利用U-Net中的编码器对脑出血CT图像特征编码,将提出的残差八度卷积(ROC)块应用到U型神经网络的跳跃连接部分,使不同层次的特征更好地融合;其次,对融合后的特征,分别引入混合注意力机制,用以提高对目标区域的特征提取能力;最后,通过改进Dice损失函数进一步加强模型对脑出血CT图像中小目标区域的特征学习力度。为验证模型的有效性,在脑出血CT图像数据集上进行实验,同U-Net,Attention U-Net,UNet++以及CE-Net相比,mIoU指标分别提升了20.9%,3.6%,7.0%,3.1%,表明AU-Net+模型具有更好的分割效果。 展开更多
关键词 脑出血CT图像分割 注意力机制 Dice损失函数 残差八度卷积模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部