We theoretically study the transmission spectrum of the cavity field in a double-cavity optomechanical system with cross-Kerr(CK) effect. The system consists of two tunneling coupling optomechanical cavities with a me...We theoretically study the transmission spectrum of the cavity field in a double-cavity optomechanical system with cross-Kerr(CK) effect. The system consists of two tunneling coupling optomechanical cavities with a mechanical resonator as a coupling interface. By doping CK medium into the mechanical resonator, CK couplings between the cavity fields and the mechanical resonator are introduced. We investigate the effects of CK coupling strength on the transmission spectrum of the cavity field, including the transmission rate, nonreciprocity and four-wave mixing(FWM). We find that the transmission spectrum of the probe field can show two obvious transparent windows, which can be widened by increasing the CK coupling strength. For the transmission between the two cavity fields, the perfect nonreciprocity and reciprocity are present and modulated by CK coupling and phase difference between two effective optomechanical couplings. In addition, the effects of the optomechanical and CK couplings on FWM show that the single peak of FWM is split into three symmetrical peaks due to the introduction of the CK effect.展开更多
A realizable quantum encryption algorithm for qubits is presented by employing bit-wise quantum computation. System extension and bit-swapping are introduced into the encryption process, which makes the ciphertext spa...A realizable quantum encryption algorithm for qubits is presented by employing bit-wise quantum computation. System extension and bit-swapping are introduced into the encryption process, which makes the ciphertext space expanded greatly. The security of the proposed algorithm is analysed in detail and the schematic physical implementation is also provided. It is shown that the algorithm, which can prevent quantum attack strategy as well as classical attack strategy, is effective to protect qubits. Finally, we extend our algorithm to encrypt classical binary bits and quantum entanglements.展开更多
We explore how a two-mode squeezed vacuum state sechθeab tanh θ[00) evolves when it undergoes a single- mode amplitude dissipative channel with rate of decay k. We find that in this process not only the squeezing p...We explore how a two-mode squeezed vacuum state sechθeab tanh θ[00) evolves when it undergoes a single- mode amplitude dissipative channel with rate of decay k. We find that in this process not only the squeezing parameter decreases, tanhθ → e-kt tanh θ, but also the second-mode vacuum state evolves into a chaotic state exp{bbln[(1 - e-2kt) tanh2 θ]}. The outcome state is no more a pure state, but an entangled mixed state.展开更多
A new approach for studying the time-evolution law of a chaotic light field in a damping-gaining coexisting process is presented. The new differential equation for determining the parameter of the density operator p(...A new approach for studying the time-evolution law of a chaotic light field in a damping-gaining coexisting process is presented. The new differential equation for determining the parameter of the density operator p(t) is derived and the solution of f for the damping and gaining processes are studied separately. Our approach is direct and the result is concise since it is not necessary for us to know the Kraus operators in advance.展开更多
We find that second-order coherence as well as a Hanbury-Brown-Twiss intensity interferometer may provide an optimal approach for eavesdropping detection in the quantum key distribution based on two-mode squeezed vacu...We find that second-order coherence as well as a Hanbury-Brown-Twiss intensity interferometer may provide an optimal approach for eavesdropping detection in the quantum key distribution based on two-mode squeezed vacuum states. With this approach, eavesdropping can be easily detected without sacrificing extra secret bits as the test key. In addition, the efficiency of the quantum key distribution protocol is enhanced greatly.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61605225, 61772295, 12174247, and 11664018)the Natural Science Foundation of Shanghai (Grant No. 16ZR1448400)。
文摘We theoretically study the transmission spectrum of the cavity field in a double-cavity optomechanical system with cross-Kerr(CK) effect. The system consists of two tunneling coupling optomechanical cavities with a mechanical resonator as a coupling interface. By doping CK medium into the mechanical resonator, CK couplings between the cavity fields and the mechanical resonator are introduced. We investigate the effects of CK coupling strength on the transmission spectrum of the cavity field, including the transmission rate, nonreciprocity and four-wave mixing(FWM). We find that the transmission spectrum of the probe field can show two obvious transparent windows, which can be widened by increasing the CK coupling strength. For the transmission between the two cavity fields, the perfect nonreciprocity and reciprocity are present and modulated by CK coupling and phase difference between two effective optomechanical couplings. In addition, the effects of the optomechanical and CK couplings on FWM show that the single peak of FWM is split into three symmetrical peaks due to the introduction of the CK effect.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60472018 and 90104005) and by the Doctoral Programs Foundation of the Ministry of Education of China (Grant No 20020247063).
文摘A realizable quantum encryption algorithm for qubits is presented by employing bit-wise quantum computation. System extension and bit-swapping are introduced into the encryption process, which makes the ciphertext space expanded greatly. The security of the proposed algorithm is analysed in detail and the schematic physical implementation is also provided. It is shown that the algorithm, which can prevent quantum attack strategy as well as classical attack strategy, is effective to protect qubits. Finally, we extend our algorithm to encrypt classical binary bits and quantum entanglements.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11047133 and 10647133)the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 2009GQS0080 and 2010GQW0027)the Research Foundation of the Education Department of Jiangxi Province of China (Grant Nos. GJJ11339 and GJJ10097)
文摘We explore how a two-mode squeezed vacuum state sechθeab tanh θ[00) evolves when it undergoes a single- mode amplitude dissipative channel with rate of decay k. We find that in this process not only the squeezing parameter decreases, tanhθ → e-kt tanh θ, but also the second-mode vacuum state evolves into a chaotic state exp{bbln[(1 - e-2kt) tanh2 θ]}. The outcome state is no more a pure state, but an entangled mixed state.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61141007,11047133,and 11175113)the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 2010GQS0080 and 2010GQW0027)+1 种基金the Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ11339)the Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University
文摘A new approach for studying the time-evolution law of a chaotic light field in a damping-gaining coexisting process is presented. The new differential equation for determining the parameter of the density operator p(t) is derived and the solution of f for the damping and gaining processes are studied separately. Our approach is direct and the result is concise since it is not necessary for us to know the Kraus operators in advance.
基金Supported by the National Natural Science Foundation of China under Grant No 60472018.
文摘We find that second-order coherence as well as a Hanbury-Brown-Twiss intensity interferometer may provide an optimal approach for eavesdropping detection in the quantum key distribution based on two-mode squeezed vacuum states. With this approach, eavesdropping can be easily detected without sacrificing extra secret bits as the test key. In addition, the efficiency of the quantum key distribution protocol is enhanced greatly.