Angle-resolved photoemission spectroscopy(ARPES)has become a cornerstone technique for elucidating the electronic structures of emergent quantum materials.Among these,kagome materials—distinguished by their two-dimen...Angle-resolved photoemission spectroscopy(ARPES)has become a cornerstone technique for elucidating the electronic structures of emergent quantum materials.Among these,kagome materials—distinguished by their two-dimensional lattice of corner-sharing triangles—provide a fertile ground for investigating exotic quantum phenomena,driven by geometric frustration,electronic correlation,and topology.In this review,we present an overview of recent ARPES studies on transition-metal kagome materials.We first outline the fundamental features of their electronic structures,including van Hove singularities,Dirac points,and flat bands,and discuss the novel quantum states that arise from many-body interactions within the kagome lattice.We then highlight key ARPES investigations into these unique electronic structures,detailing their manifestation and associated quantum states in representative kagome materials.Finally,we offer a forward-looking perspective on the potential of ARPES to uncover new quantum phenomena and its broader implications for the study of underlying physics in kagome materials.展开更多
What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law kn...What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law known as Homes'law,there is a growing consensus in the community that the Tc value of the cuprate superconductors is closely linked to the superfluid density(ρ_(s))of its ground state and the conductivity(σ)of its normal state.However,all the data supporting this empirical law(ρ_(s)=AσT_(c))have been obtained from the ambientpressure superconductors.In this study,we present the first high-pressure results about the connection of the quantities of ρ_(s) and σ with T_(c),through the studies on the Bi_(1.74)Pb_(0.38)Sr_(1.88)CuO_(6+δ)and Bi_(2)Sr_(2)CaCu_(2)O_(8+δ),in which the value of their high-pressure resistivity(ρ=1/σ)is achieved by adopting our newly established method,while the quantity ofρs is extracted using Homes'law.We highlight that the Tc values are strongly linked to the joint response factors of magnetic field and electric field,i.e.,ρ_(s) and σ,respectively,implying that the physics determining T_(c) is governed by the intrinsic electromagnetic fields of the system.展开更多
In iron-based superconductor Fe(Se,Te), a flat band-like feature near the Fermi level was observed around the Brillouin zone center in the superconducting state. It is under debate whether this is the evidence on the ...In iron-based superconductor Fe(Se,Te), a flat band-like feature near the Fermi level was observed around the Brillouin zone center in the superconducting state. It is under debate whether this is the evidence on the presence of the BCS–BEC[Bardeen–Cooper–Schrieffer(BCS), Bose–Einstein condensation(BEC)] crossover in the superconductor. High-resolution laser-based angle-resolved photoemission measurements are carried out on high quality single crystals of FeSe_(0.45)Te_(0.55) superconductor to address the issue. By employing different polarization geometries, we have resolved and isolated the dyz band and the topological surface band, making it possible to study their superconducting behaviors separately. The dyz band alone does not form a flat band-like feature in the superconducting state and the measured dispersion can be well described by the BCS picture. We find that the flat band-like feature is formed from the combination of the dyz band and the topological surface state band in the superconducting state. These results reveal the origin of the flat band-like feature and rule out the presence of BCS-BEC crossover in Fe(Se,Te) superconductor.展开更多
In high temperature cuprate superconductors,it was found that the superfluid density decreases with the increase of hole doping.One natural question is whether there exists normal fluid in the superconducting state in...In high temperature cuprate superconductors,it was found that the superfluid density decreases with the increase of hole doping.One natural question is whether there exists normal fluid in the superconducting state in the overdoped region.In this paper,we have carried out high-resolution ultra-low temperature laser-based angle-resolved photoemission measurements on a heavily overdoped Bi2212 sample with a T_(c) of 48 K.We find that this heavily overdoped Bi2212 remains in the strong coupling regime with 2Δ_(0)/(k_(B)T_(c))=5.8.The single-particle scattering rate is very small along the nodal direction(~5 meV) and increases as the momentum moves from the nodal to the antinodal regions.A hard superconducting gap opening is observed near the antinodal region with the spectral weight at the Fermi level fully suppressed to zero.The normal fluid is found to be negligibly small in the superconducting state of this heavily overdoped Bi2212.These results provide key information to understand the high T_(c) mechanism in the cuprate superconductors.展开更多
Research of infinite-layer nickelates has unveiled a broken translation symmetry,which has sparked significant interest in its root,its relationship to superconductivity,and its comparison to charge order in cuprates....Research of infinite-layer nickelates has unveiled a broken translation symmetry,which has sparked significant interest in its root,its relationship to superconductivity,and its comparison to charge order in cuprates.In this study,resonant x-ray scattering measurements were performed on thin films of infinite-layer PrNiO_(2+δ).The results show significant differences in the superlattice reflection at the Ni L_(3) absorption edge compared to that at the Pr M_(5) resonance in their dependence on energy,temperature,and local symmetry.These differences point to two distinct charge orders,although they share the same in-plane wavevectors.It is suggested that these dissimilarities could be linked to the excess oxygen dopants,given that the resonant reflections were observed in an incompletely reduced PrNiO_(2+δ)film.Furthermore,azimuthal analysis indicates that the oxygen ligands likely play a crucial role in the charge modulation revealed at the Ni L_(3) resonance.展开更多
High resolution angle-resolved photoemission measurements have been carried out to study the superconducting gap in the (Ba0.6K0.4)Fe2As2 superconductor with Tc=35 K. Two hole-like Fermi surface sheets around the F ...High resolution angle-resolved photoemission measurements have been carried out to study the superconducting gap in the (Ba0.6K0.4)Fe2As2 superconductor with Tc=35 K. Two hole-like Fermi surface sheets around the F point exhibit different superconducting gaps. The inner Fermi surface sheet shows larger (10 - 12 meV) and slightly momentum-dependent gap while the outer one has smaller (7 - 8 meV) and nearly isotropic gap. The lack of gap node in both Fermi surface sheets favours s-wave superconducting gap symmetry. Superconducting gap opening is also observed at the M(π, π) point. The two Fermi surface spots near the M point are gapped below Tc but the gap persists above Tc. The rich and detailed superconducting gap information will provide key insights and constraints in understanding pairing mechanism in the iron-based superconductors.展开更多
We report that a deep ultraviolet (DUV) laser from the sixth harmonic of a 1064nm laser has been firstly used as light source in an ultrahigh energy-resolution angle-resolved photoemission spectroscopy (ARPES). Th...We report that a deep ultraviolet (DUV) laser from the sixth harmonic of a 1064nm laser has been firstly used as light source in an ultrahigh energy-resolution angle-resolved photoemission spectroscopy (ARPES). The wavelength is 177.3nm obtained by using the second harmonic KBe2BO3F2 crystal with a frequency tripled 1064nm Nd:YVO4 laser. The large flux (10^14 - 10^15 photons/s) and narrow line width (0.26 meV) are suitable for the ultrahigh-energy resolution ARPES. The laser-ARPES can be a powerful tool to study the electronic structure at and near the Fermi level of the superconductor and correlated materials. The laser-ARPES has worked more than 500 h already.展开更多
The recent observation of superconductivity in thin films of infinite-layer nickelate Nd_(0.8)Sr_(0.2)NiO_(2) has received considerable attention.Despite the many efforts to understand the superconductivity in infinit...The recent observation of superconductivity in thin films of infinite-layer nickelate Nd_(0.8)Sr_(0.2)NiO_(2) has received considerable attention.Despite the many efforts to understand the superconductivity in infinite-layer nickelates,a consensus on the underlying mechanism for the superconductivity has yet to be reached,partly owing to the challenges with the material synthesis.Here,we report the successful growth of superconducting infinite-layer Nd_(0.8)Sr_(0.2)NiO_(2) films by pulsed laser deposition and soft chemical reduction.The details on the growth process are discussed.展开更多
We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and u...We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and undoped FeSe/SrTiO3 films with 1, 2 and 20 layers. While the electronic structure near tile Brillouin zone center F varies dramatically among different materials, the electronic structure near the Brillouin zone corners (M points), as well as their temperature dependence, are rather similar. The electronic structure near the zone corners is dominated by the electronic nematicity that gives rise to a band splitting of the dxz and dyz bands below the nematie transition temperature. A clear relation is observed between the band splitting magnitude arid the onset temperature of nematicity. Our results may shed light on the origin of nematicity, its effect on the electronic structures, and its relation with superconductivity in the iron-based superconductors.展开更多
The layered transition metal chalcogenides have been a fertile land in solid state physics for many decades. Various MX2-type transition metal dichalcogenides, such as WTe2, IrTe2, and MoS2, have triggered great atten...The layered transition metal chalcogenides have been a fertile land in solid state physics for many decades. Various MX2-type transition metal dichalcogenides, such as WTe2, IrTe2, and MoS2, have triggered great attention recently, either for the discovery of novel phenomena or some extreme or exotic physical properties, or for their potential applications. PdTe2 is a superconductor in the class of transition metal dichalcogenides, and superconductivity is enhanced in its Cu- intercalated form, Cuo.05PdTe2. It is important to study the electronic structures of PdTe2 and its intercalated form in order to explore for new phenomena and physical properties and understand the related superconductivity enhancement mecha- nism. Here we report systematic high resolution angle-resolved photoemission (ARPES) studies on PdTe2 and Cuo.05PdTe2 single crystals, combined with the band structure calculations. We present in detail for the first time the complex multi-band Fermi surface topology and densely-arranged band structure of these compounds. By carefully examining the electronic structures of the two systems, we find that Cu-intercalation in PdTe2 results in electron-doping, which causes the band structure to shift downwards by nearly 16 meV in Cuo.05PdTe2. Our results lay a foundation for further exploration and investigation on PdTe2 and related superconductors.展开更多
High-resolution angle-resolved photoemission measurements are carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7K. Combined with theoretical calculations, we discover for th...High-resolution angle-resolved photoemission measurements are carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7K. Combined with theoretical calculations, we discover for the first time the existence of topologically nontrivial surface state with Dirac cone in PbTe2 superconductor. It is located at the Brillouin zone center and possesses helical spin texture. Distinct from the usual three-dimensional topological insulators where the Dirac cone of the surface state lies at the Fermi level, the Dirac point of the surface state in PdTe2 lies deeply below the Fermi level at - 1.75 eV binding energy and is well separated from the bulk states. The identification of topological surface state in PdTe2 superconductor deeply below the Fermi level provides a unique system to explore new phenomena and properties and opens a door for finding new topological materials in transition metal ehalcogenides.展开更多
The three-dimensional(3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be v...The three-dimensional(3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A3Bi(A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission(ARPES) measurements on the two cleaved surfaces,(001) and(100), of Na3Bi. On the(001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the kx–ky plane and by varying the photon energy to get access to different out-of-plane kzs. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the(100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the(100) plane. We directly observe two isolated 3D Dirac nodes on the(100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ~150 me V before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the3 D Dirac cones, on the possible formation of surface reconstruction of the(001) surface, and on the issue of basic Brillouin zone selection for the(100) surface.展开更多
We report a reproducible approach in preparing high-quality overdoped Bi2 Sr2 CaCu2 08+δ (Bi2212) single crystals by annealing Bi2212 crystals in high oxygen pressure followed by a fast quenching. In this way, hig...We report a reproducible approach in preparing high-quality overdoped Bi2 Sr2 CaCu2 08+δ (Bi2212) single crystals by annealing Bi2212 crystals in high oxygen pressure followed by a fast quenching. In this way, high-quality overdoped and heavily overdoped Bi2212 single crystals are obtained by controlling the annealing oxygen pressure. We find that, beyond a limit of oxygen pressure that can achieve most heavily overdoped Bi2212 with a Tc N63 K, the annealed Bi2212 begins to decompose. This accounts for the existence of the hole-doping limit and thus the Tc limit in the heavily overdoped region of Bi2212 by the oxygen annealing process. These results provide a reliable way in preparing high-quality overdoped and heavily overdoped Bi2212 crystals that are important for studies of the physical properties, electronic structure and superconductivity mechanism of the cuprate superconductors.展开更多
We report comprehensive angle-resolved photoemission investigations on the electronic structure of single crystal multiple-layer FeSe films grown on CaF_2 substrate by pulsed laser deposition(PLD) method. Measuremen...We report comprehensive angle-resolved photoemission investigations on the electronic structure of single crystal multiple-layer FeSe films grown on CaF_2 substrate by pulsed laser deposition(PLD) method. Measurements on FeSe/CaF_2 samples with different superconducting transition temperatures T_c of 4 K, 9 K, and 14 K reveal electronic difference in their Fermi surface and band structure. Indication of the nematic phase transition is observed from temperature-dependent measurements of these samples; the nematic transition temperature is 140-160 K, much higher than ~90 K for the bulk FeSe. Potassium deposition is applied onto the surface of these samples; the nematic phase is suppressed by potassium deposition which introduces electrons to these FeSe films and causes a pronounced electronic structure change. We compared and discussed the electronic structure and superconductivity of the FeSe/CaF_2 films by PLD method with the FeSe/SrTiO_3 films by molecular beam epitaxy(MBE) method and bulk FeSe. The PLD-grown multilayer FeSe/CaF_2 is more hole-doped than that in MBE-grown multiple-layer FeSe films. Our results on FeSe/CaF_2 films by PLD method establish a link between bulk FeSe single crystal and FeSe/SrTiO_3 films by MBE method, and provide important information to understand superconductivity in FeSe-related systems.展开更多
We have carried out high-resolution angle-resolved photoemission measurements on the Ce-based heavy fermion compound CePt2In7that exhibits stronger two-dimensional character than the prototypical heavy fermion system ...We have carried out high-resolution angle-resolved photoemission measurements on the Ce-based heavy fermion compound CePt2In7that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn5.Multiple Fermi surface sheets and a complex band structure are clearly resolved. We have also performed detailed band structure calculations on CePt2In7. The good agreement found between our measurements and the calculations suggests that the band renormalization effect is rather weak in CePt2In7. A comparison of the common features of the electronic structure of CePt2In7and CeCoIn5indicates that CeCoIn5shows a much stronger band renormalization effect than CePt2In7. These results provide new information for understanding the heavy fermion behaviors and unconventional superconductivity in Ce-based heavy fermion systems.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12488201,12074411,12374066,12374154,and 12494593)the National Key Research and Development Program of China(Grant No.2022YFA1403900,2021YFA1401800,2022YFA1604200,2023YFA1406002,2024YFA1408301,and 2024YFA1400026)+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB25000000 and XDB33000000)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301800)the Youth Innovation Promotion Association of CAS(Grant No.Y2021006)Synergetic Extreme Condition User Facility(SECUF).
文摘Angle-resolved photoemission spectroscopy(ARPES)has become a cornerstone technique for elucidating the electronic structures of emergent quantum materials.Among these,kagome materials—distinguished by their two-dimensional lattice of corner-sharing triangles—provide a fertile ground for investigating exotic quantum phenomena,driven by geometric frustration,electronic correlation,and topology.In this review,we present an overview of recent ARPES studies on transition-metal kagome materials.We first outline the fundamental features of their electronic structures,including van Hove singularities,Dirac points,and flat bands,and discuss the novel quantum states that arise from many-body interactions within the kagome lattice.We then highlight key ARPES investigations into these unique electronic structures,detailing their manifestation and associated quantum states in representative kagome materials.Finally,we offer a forward-looking perspective on the potential of ARPES to uncover new quantum phenomena and its broader implications for the study of underlying physics in kagome materials.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFA1401800 and 2022YFA1403900)the National Natural Science Foundation of China(Grant Nos.U2032214,12122414,12104487,and 12004419)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000)supported by the US Department of Energy,Office of Basic Energy Sciences(Grant No.DOE-sc0012704)。
文摘What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law known as Homes'law,there is a growing consensus in the community that the Tc value of the cuprate superconductors is closely linked to the superfluid density(ρ_(s))of its ground state and the conductivity(σ)of its normal state.However,all the data supporting this empirical law(ρ_(s)=AσT_(c))have been obtained from the ambientpressure superconductors.In this study,we present the first high-pressure results about the connection of the quantities of ρ_(s) and σ with T_(c),through the studies on the Bi_(1.74)Pb_(0.38)Sr_(1.88)CuO_(6+δ)and Bi_(2)Sr_(2)CaCu_(2)O_(8+δ),in which the value of their high-pressure resistivity(ρ=1/σ)is achieved by adopting our newly established method,while the quantity ofρs is extracted using Homes'law.We highlight that the Tc values are strongly linked to the joint response factors of magnetic field and electric field,i.e.,ρ_(s) and σ,respectively,implying that the physics determining T_(c) is governed by the intrinsic electromagnetic fields of the system.
基金Projects supported by the National Key Research and Development Program of China(GrantNos.2021YFA1401800,2022YFA1604200,2022YFA1403900,and2023YFA1406000)the National Natural Science Foundation of China(Grant Nos.12488201,12374066,12074411,and 12374154)+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB25000000 and XDB33000000)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301800)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y2021006)the Synergetic Extreme Condition User Facility(SECUF)。
文摘In iron-based superconductor Fe(Se,Te), a flat band-like feature near the Fermi level was observed around the Brillouin zone center in the superconducting state. It is under debate whether this is the evidence on the presence of the BCS–BEC[Bardeen–Cooper–Schrieffer(BCS), Bose–Einstein condensation(BEC)] crossover in the superconductor. High-resolution laser-based angle-resolved photoemission measurements are carried out on high quality single crystals of FeSe_(0.45)Te_(0.55) superconductor to address the issue. By employing different polarization geometries, we have resolved and isolated the dyz band and the topological surface band, making it possible to study their superconducting behaviors separately. The dyz band alone does not form a flat band-like feature in the superconducting state and the measured dispersion can be well described by the BCS picture. We find that the flat band-like feature is formed from the combination of the dyz band and the topological surface state band in the superconducting state. These results reveal the origin of the flat band-like feature and rule out the presence of BCS-BEC crossover in Fe(Se,Te) superconductor.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12488201,12374066,12074411,and 12374154)the National Key Research and Development Program of China(Grant Nos.2021YFA1401800,2022YFA1604200,2022YFA1403900,and 2023YFA1406000)+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB25000000 and XDB33000000)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301800)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y2021006)the Synergetic Extreme Condition User Facility(SECUF)。
文摘In high temperature cuprate superconductors,it was found that the superfluid density decreases with the increase of hole doping.One natural question is whether there exists normal fluid in the superconducting state in the overdoped region.In this paper,we have carried out high-resolution ultra-low temperature laser-based angle-resolved photoemission measurements on a heavily overdoped Bi2212 sample with a T_(c) of 48 K.We find that this heavily overdoped Bi2212 remains in the strong coupling regime with 2Δ_(0)/(k_(B)T_(c))=5.8.The single-particle scattering rate is very small along the nodal direction(~5 meV) and increases as the momentum moves from the nodal to the antinodal regions.A hard superconducting gap opening is observed near the antinodal region with the spectral weight at the Fermi level fully suppressed to zero.The normal fluid is found to be negligibly small in the superconducting state of this heavily overdoped Bi2212.These results provide key information to understand the high T_(c) mechanism in the cuprate superconductors.
基金supported by the National Natural Science Foundation of China(Grant No.12074411)the National Key Research and Development Program of China(Grant Nos.2022YFA1403900 and 2021YFA1401800)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000)the Swiss National Science Foundation(Grant No.200021_188564)。
文摘Research of infinite-layer nickelates has unveiled a broken translation symmetry,which has sparked significant interest in its root,its relationship to superconductivity,and its comparison to charge order in cuprates.In this study,resonant x-ray scattering measurements were performed on thin films of infinite-layer PrNiO_(2+δ).The results show significant differences in the superlattice reflection at the Ni L_(3) absorption edge compared to that at the Pr M_(5) resonance in their dependence on energy,temperature,and local symmetry.These differences point to two distinct charge orders,although they share the same in-plane wavevectors.It is suggested that these dissimilarities could be linked to the excess oxygen dopants,given that the resonant reflections were observed in an incompletely reduced PrNiO_(2+δ)film.Furthermore,azimuthal analysis indicates that the oxygen ligands likely play a crucial role in the charge modulation revealed at the Ni L_(3) resonance.
基金Supported by the National Natural Science Foundation of China, the National High-Tech Research and Development Programme of China under Grant Nos 2006CB601002 and 2006CB921302, and Chinese Academy of Sciences (ITSNEM).We thank T. Xiang for useful discussion.
文摘High resolution angle-resolved photoemission measurements have been carried out to study the superconducting gap in the (Ba0.6K0.4)Fe2As2 superconductor with Tc=35 K. Two hole-like Fermi surface sheets around the F point exhibit different superconducting gaps. The inner Fermi surface sheet shows larger (10 - 12 meV) and slightly momentum-dependent gap while the outer one has smaller (7 - 8 meV) and nearly isotropic gap. The lack of gap node in both Fermi surface sheets favours s-wave superconducting gap symmetry. Superconducting gap opening is also observed at the M(π, π) point. The two Fermi surface spots near the M point are gapped below Tc but the gap persists above Tc. The rich and detailed superconducting gap information will provide key insights and constraints in understanding pairing mechanism in the iron-based superconductors.
基金Supported by the National Basic Research Programme of China under Grant No 2004CB619006, and the National Natural Science Foundation of China under Grant Nos 60578030 and 50590404.
文摘We report that a deep ultraviolet (DUV) laser from the sixth harmonic of a 1064nm laser has been firstly used as light source in an ultrahigh energy-resolution angle-resolved photoemission spectroscopy (ARPES). The wavelength is 177.3nm obtained by using the second harmonic KBe2BO3F2 crystal with a frequency tripled 1064nm Nd:YVO4 laser. The large flux (10^14 - 10^15 photons/s) and narrow line width (0.26 meV) are suitable for the ultrahigh-energy resolution ARPES. The laser-ARPES can be a powerful tool to study the electronic structure at and near the Fermi level of the superconductor and correlated materials. The laser-ARPES has worked more than 500 h already.
基金Supported in part by the National Natural Science Foundation of China(Grant Nos.12074411 and 11888101)the National Key Research and Development Program of China(Grant Nos.2016YFA0300300 and 2017YFA0302900)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000)the Research Program of Beijing Academy of Quantum Information Sciences(Grant No.Y18G06).
文摘The recent observation of superconductivity in thin films of infinite-layer nickelate Nd_(0.8)Sr_(0.2)NiO_(2) has received considerable attention.Despite the many efforts to understand the superconductivity in infinite-layer nickelates,a consensus on the underlying mechanism for the superconductivity has yet to be reached,partly owing to the challenges with the material synthesis.Here,we report the successful growth of superconducting infinite-layer Nd_(0.8)Sr_(0.2)NiO_(2) films by pulsed laser deposition and soft chemical reduction.The details on the growth process are discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11190022,11334010 and 11534007the National Basic Research Program of China under Grant No 2015CB921000the Strategic Priority Research Program(B)of Chinese Academy of Sciences under Grant No XDB07020300
文摘We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and undoped FeSe/SrTiO3 films with 1, 2 and 20 layers. While the electronic structure near tile Brillouin zone center F varies dramatically among different materials, the electronic structure near the Brillouin zone corners (M points), as well as their temperature dependence, are rather similar. The electronic structure near the zone corners is dominated by the electronic nematicity that gives rise to a band splitting of the dxz and dyz bands below the nematie transition temperature. A clear relation is observed between the band splitting magnitude arid the onset temperature of nematicity. Our results may shed light on the origin of nematicity, its effect on the electronic structures, and its relation with superconductivity in the iron-based superconductors.
基金Project supported by the National Natural Science Foundation of China(Grant No.11190022)the National Basic Research Program of China(Grant Nos.2011CB921703 and 2011CBA00110)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07020300)
文摘The layered transition metal chalcogenides have been a fertile land in solid state physics for many decades. Various MX2-type transition metal dichalcogenides, such as WTe2, IrTe2, and MoS2, have triggered great attention recently, either for the discovery of novel phenomena or some extreme or exotic physical properties, or for their potential applications. PdTe2 is a superconductor in the class of transition metal dichalcogenides, and superconductivity is enhanced in its Cu- intercalated form, Cuo.05PdTe2. It is important to study the electronic structures of PdTe2 and its intercalated form in order to explore for new phenomena and physical properties and understand the related superconductivity enhancement mecha- nism. Here we report systematic high resolution angle-resolved photoemission (ARPES) studies on PdTe2 and Cuo.05PdTe2 single crystals, combined with the band structure calculations. We present in detail for the first time the complex multi-band Fermi surface topology and densely-arranged band structure of these compounds. By carefully examining the electronic structures of the two systems, we find that Cu-intercalation in PdTe2 results in electron-doping, which causes the band structure to shift downwards by nearly 16 meV in Cuo.05PdTe2. Our results lay a foundation for further exploration and investigation on PdTe2 and related superconductors.
基金the National Natural Science Foundation of China under Grant Nos 11190022,11274359 and 11422428the National Basic Research Program of China under Grant Nos 2011CB921703,2011CBA00110,2011CBA00108 and 2013CB921700the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant Nos XDB07020300 and XDB07020100
文摘High-resolution angle-resolved photoemission measurements are carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7K. Combined with theoretical calculations, we discover for the first time the existence of topologically nontrivial surface state with Dirac cone in PbTe2 superconductor. It is located at the Brillouin zone center and possesses helical spin texture. Distinct from the usual three-dimensional topological insulators where the Dirac cone of the surface state lies at the Fermi level, the Dirac point of the surface state in PdTe2 lies deeply below the Fermi level at - 1.75 eV binding energy and is well separated from the bulk states. The identification of topological surface state in PdTe2 superconductor deeply below the Fermi level provides a unique system to explore new phenomena and properties and opens a door for finding new topological materials in transition metal ehalcogenides.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574367)the National Basic Research Program of China(Grant Nos.2013CB921700,2013CB921904,and 2015CB921300)+2 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07020300)The synchrotron radiation experiments have been done under the HiSOR Proposal numbers12-B-47 and 13-B-16
文摘The three-dimensional(3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A3Bi(A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission(ARPES) measurements on the two cleaved surfaces,(001) and(100), of Na3Bi. On the(001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the kx–ky plane and by varying the photon energy to get access to different out-of-plane kzs. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the(100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the(100) plane. We directly observe two isolated 3D Dirac nodes on the(100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ~150 me V before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the3 D Dirac cones, on the possible formation of surface reconstruction of the(001) surface, and on the issue of basic Brillouin zone selection for the(100) surface.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11190022,11334010 and 11534007the National Basic Research Program of China under Grant No 2015CB921000the Strategic Priority Research Program(B)of Chinese Academy of Sciences under Grant No XDB07020300
文摘We report a reproducible approach in preparing high-quality overdoped Bi2 Sr2 CaCu2 08+δ (Bi2212) single crystals by annealing Bi2212 crystals in high oxygen pressure followed by a fast quenching. In this way, high-quality overdoped and heavily overdoped Bi2212 single crystals are obtained by controlling the annealing oxygen pressure. We find that, beyond a limit of oxygen pressure that can achieve most heavily overdoped Bi2212 with a Tc N63 K, the annealed Bi2212 begins to decompose. This accounts for the existence of the hole-doping limit and thus the Tc limit in the heavily overdoped region of Bi2212 by the oxygen annealing process. These results provide a reliable way in preparing high-quality overdoped and heavily overdoped Bi2212 crystals that are important for studies of the physical properties, electronic structure and superconductivity mechanism of the cuprate superconductors.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574360)the National Basic Research Program of China(Grant Nos.2015CB921300,2013CB921700,and 2013CB921904)+1 种基金the National Key Research and Development Program of China(Grant No.2016YFA0300300)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07020300)
文摘We report comprehensive angle-resolved photoemission investigations on the electronic structure of single crystal multiple-layer FeSe films grown on CaF_2 substrate by pulsed laser deposition(PLD) method. Measurements on FeSe/CaF_2 samples with different superconducting transition temperatures T_c of 4 K, 9 K, and 14 K reveal electronic difference in their Fermi surface and band structure. Indication of the nematic phase transition is observed from temperature-dependent measurements of these samples; the nematic transition temperature is 140-160 K, much higher than ~90 K for the bulk FeSe. Potassium deposition is applied onto the surface of these samples; the nematic phase is suppressed by potassium deposition which introduces electrons to these FeSe films and causes a pronounced electronic structure change. We compared and discussed the electronic structure and superconductivity of the FeSe/CaF_2 films by PLD method with the FeSe/SrTiO_3 films by molecular beam epitaxy(MBE) method and bulk FeSe. The PLD-grown multilayer FeSe/CaF_2 is more hole-doped than that in MBE-grown multiple-layer FeSe films. Our results on FeSe/CaF_2 films by PLD method establish a link between bulk FeSe single crystal and FeSe/SrTiO_3 films by MBE method, and provide important information to understand superconductivity in FeSe-related systems.
基金The ARPES experimental work is supported by the National Natural Science Foundation of China(Grant No.11574360)the National Basic Research Program of China(Grant Nos.2015CB921300,2013CB921700,and 2013CB921904)+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07020300)supported by the National Natural Science Foundation of China(Grant No.91421304)the Fundamental Research Funds for the Central Universities of Chinathe Research Funds of Renmin University of China(Grant Nos.14XNLQ03 and16XNLQ01)
文摘We have carried out high-resolution angle-resolved photoemission measurements on the Ce-based heavy fermion compound CePt2In7that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn5.Multiple Fermi surface sheets and a complex band structure are clearly resolved. We have also performed detailed band structure calculations on CePt2In7. The good agreement found between our measurements and the calculations suggests that the band renormalization effect is rather weak in CePt2In7. A comparison of the common features of the electronic structure of CePt2In7and CeCoIn5indicates that CeCoIn5shows a much stronger band renormalization effect than CePt2In7. These results provide new information for understanding the heavy fermion behaviors and unconventional superconductivity in Ce-based heavy fermion systems.