期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
切入场景下基于碰撞风险聚类的改进车速预测方法 被引量:2
1
作者 马彬 周世亚 +2 位作者 姜文龙 史立峰 赵宇 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第1期67-76,共10页
切入工况的高精度车速预测是保证自动驾驶切入安全的关键依据。为提高自动驾驶汽车切入工况安全,开展了基于车车耦合风险聚类的切入场景自车速度高精度预测方法的研究。首先,依据实验所得自然驾驶数据进行车辆切入切出片段提取,使用K-me... 切入工况的高精度车速预测是保证自动驾驶切入安全的关键依据。为提高自动驾驶汽车切入工况安全,开展了基于车车耦合风险聚类的切入场景自车速度高精度预测方法的研究。首先,依据实验所得自然驾驶数据进行车辆切入切出片段提取,使用K-means方法依据碰撞风险与加速度关联特征进行聚类分析。其次,基于支持向量机(SVM)模型,对切入切出工况车车交互状态进行在线识别,对切入危险工况进行实时预测。最后,提出基于自回归综合移动平均(ARIMA)模型的改进车速预测方法,结合在线识别结果进行车速在线优化。仿真结果表明,所提出的基于碰撞风险聚类的改进ARIMA车速预测方法对提高切入安全效果明显,较传统的预测方法车辆的碰撞风险降低了10%~20%。研究结果表明,ARIMA模型的改进车速预测方法对提高自动驾驶车切入安全具有重要的研究意义。 展开更多
关键词 车速预测 碰撞风险 K-MEANS聚类 支持向量机 ARIMA模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部