The pygmy and giant dipole resonances in proton-rich nuclei 17,1817,18Ne are investigated with a fully self-consistent approach. The properties of ground states are calculated in the Skyrme Hartree–Fock with the Bard...The pygmy and giant dipole resonances in proton-rich nuclei 17,1817,18Ne are investigated with a fully self-consistent approach. The properties of ground states are calculated in the Skyrme Hartree–Fock with the Bardeen–Cooper–Schrieffer approximation to take into account the pairing correlation. The quasiparticle random phase approximation (QRPA) method is used to explore the properties of excited dipole states. In the calculations the SLy5 Skyrme interaction is employed. In addition to the giant dipole resonances, pygmy dipole resonances (PDR) are found to be located in the energy region below 10 MeV in both ^17,18Ne. The strength and transition density show that the low-lying states are typical PDR states. However, analyzing the QRPA amplitudes of proton and neutron 2 quasiparticle (2qp) configurations for a given low-lying state in ^17,18Ne, we find that the PDR state is less collective, more like a single 2qp excitation.展开更多
The isoscalar giant monopole resonances(ISGMRs)of hypernucleiAA42Ca,AA(122)Sn,andAA(210)Pb are investigated using a fully self-consistent Skyrme-Hartree-Fock plus random phase approximation method.The Skyrme-typ...The isoscalar giant monopole resonances(ISGMRs)of hypernucleiAA42Ca,AA(122)Sn,andAA(210)Pb are investigated using a fully self-consistent Skyrme-Hartree-Fock plus random phase approximation method.The Skyrme-type forces,SGII,No.5 and SAAl,are adopted to describe the nucleon-nucleon,A hyperon-nucleon and A hyperon-A hyperon(AA)interactions,respectively.For a given hyperon fraction,we find that effects of AA interaction on the properties of infinite symmetric nuclear matter and finite hypernuclei are very small.The ISGMR strengths are shifted to the high energy region when two A are added into normal nuclei.The changes are from two parts,one is due to the mean field calculations,and the other is from the residual interaction associated with A hyperons.The constrained energies are increased by about 0.5-0.7MeV,which consequently enhances the effective incompressibility modulus of hypernuclei.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11375022,11575060,11505058 and 11435014
文摘The pygmy and giant dipole resonances in proton-rich nuclei 17,1817,18Ne are investigated with a fully self-consistent approach. The properties of ground states are calculated in the Skyrme Hartree–Fock with the Bardeen–Cooper–Schrieffer approximation to take into account the pairing correlation. The quasiparticle random phase approximation (QRPA) method is used to explore the properties of excited dipole states. In the calculations the SLy5 Skyrme interaction is employed. In addition to the giant dipole resonances, pygmy dipole resonances (PDR) are found to be located in the energy region below 10 MeV in both ^17,18Ne. The strength and transition density show that the low-lying states are typical PDR states. However, analyzing the QRPA amplitudes of proton and neutron 2 quasiparticle (2qp) configurations for a given low-lying state in ^17,18Ne, we find that the PDR state is less collective, more like a single 2qp excitation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11575060,11775014,11505058 and 11435014
文摘The isoscalar giant monopole resonances(ISGMRs)of hypernucleiAA42Ca,AA(122)Sn,andAA(210)Pb are investigated using a fully self-consistent Skyrme-Hartree-Fock plus random phase approximation method.The Skyrme-type forces,SGII,No.5 and SAAl,are adopted to describe the nucleon-nucleon,A hyperon-nucleon and A hyperon-A hyperon(AA)interactions,respectively.For a given hyperon fraction,we find that effects of AA interaction on the properties of infinite symmetric nuclear matter and finite hypernuclei are very small.The ISGMR strengths are shifted to the high energy region when two A are added into normal nuclei.The changes are from two parts,one is due to the mean field calculations,and the other is from the residual interaction associated with A hyperons.The constrained energies are increased by about 0.5-0.7MeV,which consequently enhances the effective incompressibility modulus of hypernuclei.