Ion parameters in electron cyclotron resonance (ECR) microwave plasma were measured by ion sensitive probe and were compared with the electron parameters obtained by double Langmuir probe. The effects of gas pressur...Ion parameters in electron cyclotron resonance (ECR) microwave plasma were measured by ion sensitive probe and were compared with the electron parameters obtained by double Langmuir probe. The effects of gas pressure and microwave power on the ion temperature and density were analyzed. The spatial distribution of the ion parameters was also investigated by the ion sensitive probes with a tunable radial depth installed on different probe windows along the chamber axis. Results showed that the ion density measured by the ion sensitive probe was in good agreement with the electron density measured by the double Langmuir probe. The influ- ence of gas pressure on the ion parameters was stronger than that of microwave power. With the increase in working pressure, the ion temperature decreased monotonously with a decreasing rate larger than that at higher pressure. The ion density first increased to a peak (42.3~ 101~ cm-3) at 1 Pa and then decreased. The ion temperature and density increased little with the increase in the microwave power from 400 W to 800 W, The plasma far away from the resonant point is found to be radially uniform.展开更多
Chemically vapor deposited diamond films were etched at different parameters using oxygen plasma produced by a DC (direct current) glow discharge and then polished by a modified mechanical polishing device. Scanning...Chemically vapor deposited diamond films were etched at different parameters using oxygen plasma produced by a DC (direct current) glow discharge and then polished by a modified mechanical polishing device. Scanning electron microscope, atomic force microscope and Raman spectrometer were used to evaluate the surface states of diamond films before and after polishing. It was found that a moderate plasma etching would produce a lot of etch pits and amorphous carbon on the top surface of diamond film. As a result, the quality and the efficiency of mechanical polishing have been enhanced remarkably.展开更多
基金supported by National Natural Science Foundation of China (No. 10875093)
文摘Ion parameters in electron cyclotron resonance (ECR) microwave plasma were measured by ion sensitive probe and were compared with the electron parameters obtained by double Langmuir probe. The effects of gas pressure and microwave power on the ion temperature and density were analyzed. The spatial distribution of the ion parameters was also investigated by the ion sensitive probes with a tunable radial depth installed on different probe windows along the chamber axis. Results showed that the ion density measured by the ion sensitive probe was in good agreement with the electron density measured by the double Langmuir probe. The influ- ence of gas pressure on the ion parameters was stronger than that of microwave power. With the increase in working pressure, the ion temperature decreased monotonously with a decreasing rate larger than that at higher pressure. The ion density first increased to a peak (42.3~ 101~ cm-3) at 1 Pa and then decreased. The ion temperature and density increased little with the increase in the microwave power from 400 W to 800 W, The plasma far away from the resonant point is found to be radially uniform.
基金National Natural Science Foundation of China(No.50572075)
文摘Chemically vapor deposited diamond films were etched at different parameters using oxygen plasma produced by a DC (direct current) glow discharge and then polished by a modified mechanical polishing device. Scanning electron microscope, atomic force microscope and Raman spectrometer were used to evaluate the surface states of diamond films before and after polishing. It was found that a moderate plasma etching would produce a lot of etch pits and amorphous carbon on the top surface of diamond film. As a result, the quality and the efficiency of mechanical polishing have been enhanced remarkably.