期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CEEMDAN-LightGBM模型的洪水预测研究
1
作者 王军 张宇航 +2 位作者 崔云烨 李怡豪 吕鹏祥 《人民黄河》 CAS 北大核心 2024年第9期99-105,共7页
为了应对暴雨可能引发的洪涝灾害风险,基于黄河利津水文站监测的水文等数据,以LightGBM为基准模型,运用经自适应噪声完备集合经验模态分解(CEEMDAN)算法优化后的CEEMDAN-LightGBM模型对水位进行预测,并将其与长短期记忆网络(LSTM)模型、... 为了应对暴雨可能引发的洪涝灾害风险,基于黄河利津水文站监测的水文等数据,以LightGBM为基准模型,运用经自适应噪声完备集合经验模态分解(CEEMDAN)算法优化后的CEEMDAN-LightGBM模型对水位进行预测,并将其与长短期记忆网络(LSTM)模型、LightGBM模型的预测效果进行对比。以2个气候条件不同的黄河水文站(利津、花园口)的水文数据为原始数据集输入CEEMDAN-LightGBM模型,验证模型的适应性和稳定性。结果表明:CEEMDAN-LightGBM模型在水位预测方面表现出优越的性能,相较于LSTM、LightGBM模型,该模型的E_(MA)分别减小了46.08%、9.95%,E_(RMS)分别减小了33.01%、43.01%,E_(MAP)分别减小了94.99%、3.82%,R^(2)分别增大了30.48%、7.58%。CEEMDAN-LightGBM模型还能预测流量这一重要水文特征,为模型预测洪水发生提供更有力的判断依据。对比CEEMDAN-LightGBM模型预测花园口水文站与利津水文站的水位和流量效果,除预测两站水位的E_(MAP)值相差23.64%外,E_(MA)值、E_(MAP)和E_(RMS)值相差均不超过10%,R^(2)相差不超过2%。 展开更多
关键词 洪水预测 LightGBM模型 CEEMDAN算法 CEEMDAN-LightGBM模型 LSTM模型 利津水文站 花园口水文站
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部