Low-frequency (2.72-3.70 Hz) relaxation oscillations at 100 mTorr at higher absorbed power were observed from time-varying optical emission of the main discharge chamber and the periphery. We interpret the low frequ...Low-frequency (2.72-3.70 Hz) relaxation oscillations at 100 mTorr at higher absorbed power were observed from time-varying optical emission of the main discharge chamber and the periphery. We interpret the low frequency oscillations using an electromagnetic model of the slot impedance with parallel connection variational peripheral capacitance, coupled to a circuit analysis of the system including the matching network. The model results are in general agreement with the experimental observations, and indicate a variety of behaviours dependent on the matching conditions.展开更多
Both high and low frequency relaxation oscillations have been observed in an argon capacitive discharge connected to a peripheral grounded chamber through a slot with dielectric spacers. The oscillations, observed fro...Both high and low frequency relaxation oscillations have been observed in an argon capacitive discharge connected to a peripheral grounded chamber through a slot with dielectric spacers. The oscillations, observed from time-varying optical emission of the main discharge chamber, show, for example, a high frequency (46 kHz) relaxation oscillation at 100 mTorr, with an absorbed power near the peripheral breakdown, and a low frequency (2.7-3.7 Hz) oscillation, at a higher absorbed power. The high frequency oscillation is found to ignite a plasma in the slot, but usually not in the periphery. The high frequency oscillation is interpreted by using an electromagnetic model of the slot impedance, combined with the circuit analysis of the system including a matching network. The model is further developed by using a parallel connection of variable peripheral capacitance to analyse the low frequency oscillation. The results obtained from the model are in agreement with the experimental observations and indicate that a variety of behaviours are dependent on the matching conditions.展开更多
基金Supported by the National Science Foundation of USA under Grant No ECS-0139956, and the Science Foundation of the Educational Administration of Guizhou Province under Grant No 2006215. We acknowledge the Lam Research Corporation, the State of California MICRO Program, and a UC Discovery Grant from the Industry-University Cooperative Research Program (IUCRP).
文摘Low-frequency (2.72-3.70 Hz) relaxation oscillations at 100 mTorr at higher absorbed power were observed from time-varying optical emission of the main discharge chamber and the periphery. We interpret the low frequency oscillations using an electromagnetic model of the slot impedance with parallel connection variational peripheral capacitance, coupled to a circuit analysis of the system including the matching network. The model results are in general agreement with the experimental observations, and indicate a variety of behaviours dependent on the matching conditions.
基金Project supported by the Science Foundation of the Educational Bureau of Guizhou Province in China (Grant No ECS-2006215)the Lam Research Corporation+2 种基金the State of California MICRO ProgramNational Science Foundation (Grant No ECS-0139956)a UC Discovery Grant from the Industry-University Cooperative Research Program (IUCRP)
文摘Both high and low frequency relaxation oscillations have been observed in an argon capacitive discharge connected to a peripheral grounded chamber through a slot with dielectric spacers. The oscillations, observed from time-varying optical emission of the main discharge chamber, show, for example, a high frequency (46 kHz) relaxation oscillation at 100 mTorr, with an absorbed power near the peripheral breakdown, and a low frequency (2.7-3.7 Hz) oscillation, at a higher absorbed power. The high frequency oscillation is found to ignite a plasma in the slot, but usually not in the periphery. The high frequency oscillation is interpreted by using an electromagnetic model of the slot impedance, combined with the circuit analysis of the system including a matching network. The model is further developed by using a parallel connection of variable peripheral capacitance to analyse the low frequency oscillation. The results obtained from the model are in agreement with the experimental observations and indicate that a variety of behaviours are dependent on the matching conditions.