期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
云环境下方差定向变异遗传算法的任务调度 被引量:8
1
作者 孙敏 叶侨楠 陈中雄 《计算机应用》 CSCD 北大核心 2019年第11期3328-3332,共5页
云环境下遗传算法(GA)的任务调度存在寻优能力差、结果不稳定等问题。对于上述问题,提出了一种基于方差与定向变异的遗传算法(V-DVGA)。在选择部分,在每一次迭代的过程中进行多次选择,利用数学方差来保证种群的多样性并扩大较优解的搜... 云环境下遗传算法(GA)的任务调度存在寻优能力差、结果不稳定等问题。对于上述问题,提出了一种基于方差与定向变异的遗传算法(V-DVGA)。在选择部分,在每一次迭代的过程中进行多次选择,利用数学方差来保证种群的多样性并扩大较优解的搜索范围。在交叉部分,建立新的交叉机制,丰富种群的多样性并提高种群整体的适应度。在变异部分,优化变异机制,在传统变异的基础上采用定向变异来提高算法的寻优能力。通过workflowSim平台进行云环境仿真实验,将此算法与经典的遗传算法和当前的基于遗传算法的工作流调度算法(CWTS-GA)进行比较。实验结果表明,在相同的设置条件下,该算法在执行效率、寻优能力和稳定性等方面优于其他两个算法,是一种云计算环境下有效的任务调度算法。 展开更多
关键词 云环境 任务调度 遗传算法 方差 定向变异
在线阅读 下载PDF
云环境下基于HEDSM的工作流调度策略
2
作者 孙敏 陈中雄 叶侨楠 《计算机科学》 CSCD 北大核心 2020年第6期252-259,共8页
针对传统算法处理云环境中任务调度时出现的寻优性能差以及寻优方案不能满足用户多样性需求的问题,在考虑任务完成时间、完成成本以及资源闲置率3个优化目标的情况下,文中通过模拟启发式算法调度过程(初始化—适应度评估—任务调度—选... 针对传统算法处理云环境中任务调度时出现的寻优性能差以及寻优方案不能满足用户多样性需求的问题,在考虑任务完成时间、完成成本以及资源闲置率3个优化目标的情况下,文中通过模拟启发式算法调度过程(初始化—适应度评估—任务调度—选择),建构了一种层次评估和动态选择模型(Hierarchy Evaluation and Dynamic Selection Model,HEDSM)。在初始化阶段,利用传统的表调度算法(Heterogeneous Earliest Finish Time,HEFT)对工作流任务模型进行预处理,保证任务具有一定的优先级。在适应度评估阶段,从云用户和云服务提供商两个层次构建不同的方案评估模型来同时满足两方面的需求。在任务调度阶段,设置两步调度:1)设置策略集,对任务进行预调度,保证生成的预调度方案继承各个策略的调度优势;2)设置任务迁移策略,对预调度方案进行处理,以此提升算法的寻优性能。在选择阶段,根据不同的评估模型在方案集中选择合适的调度方案。实验利用WorkflowSim仿真平台,采用科学工作流实例进行实验,将传统的Min-Min,Max-Min,FCFS调度策略以及目前存在的IMax-Min和LWRound_Robin调度策略作为对比算法,从用户多样性需求和策略改进比(Improve Ratio of Strategy,IROS)两个方面评估算法的调度性能。结果证明,所提算法在保证负载均衡的基础上,缩短了完成时间并降低了完成成本,更适用于复杂多变的云环境下的任务调度。 展开更多
关键词 云计算 任务调度 工作流 任务迁移 多目标优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部