期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于DCGAN和U^(2)-Net模型的齿轮点蚀辨识
1
作者 刘妤 谭钦宜 古前程 《振动与冲击》 北大核心 2025年第10期301-310,共10页
结合改建的齿轮试验台能够在线获取齿轮工作齿面图像的优势,探讨了基于机器视觉技术实现齿轮点蚀辨识的方法,并开展了试验研究。针对齿轮点蚀样本稀缺,采用深度卷积生成对抗网络(deep convolutional generative adversarial network,DCG... 结合改建的齿轮试验台能够在线获取齿轮工作齿面图像的优势,探讨了基于机器视觉技术实现齿轮点蚀辨识的方法,并开展了试验研究。针对齿轮点蚀样本稀缺,采用深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN),实现了样本的多样化、高质量扩增;结合前期研究基础,提取了齿轮的有效工作齿面,实现了齿面倾斜校正和畸变修正;引入ECA注意力机制,改进了U^(2)-Net模型,实现了齿轮点蚀图像感兴趣区域的精确分割;在此基础上,通过统计齿轮历史点蚀率,构建了基于图像信号的齿轮点蚀辨识模型,实现了齿轮点蚀辨识。结果表明:采用机器视觉技术实现齿轮点蚀辨识的方法是可行的,基于DCGAN和U^(2)-Net模型的齿轮点蚀识别准确率达93.56%。研究成果可为齿轮点蚀辨识提供一种更为直接、可靠的方法,对于机械装备的状态监测有一定的参考价值。 展开更多
关键词 齿轮 点蚀 模式识别 深度卷积生成对抗网络(DCGAN) U^(2)-Net
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部