期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
注意力机制的SAR图像车辆目标检测网络 被引量:3
1
作者 张强 杨欣朋 +2 位作者 赵世祥 卫栋栋 韩臻 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2023年第1期36-47,共12页
在SAR图像车辆目标检测过程中,车辆轮廓定位不仅能够提供车辆位置信息,而且还能够为车辆状态分析提供依据,是SAR图像理解的关键步骤。但SAR图像中乘性斑点噪声会对轮廓定位造成干扰,增加车辆目标检测的难度。针对这一问题,提出了一种注... 在SAR图像车辆目标检测过程中,车辆轮廓定位不仅能够提供车辆位置信息,而且还能够为车辆状态分析提供依据,是SAR图像理解的关键步骤。但SAR图像中乘性斑点噪声会对轮廓定位造成干扰,增加车辆目标检测的难度。针对这一问题,提出了一种注意力机制的SAR图像像素级车辆目标检测网络。该网络由目标筛选、目标定位和轮廓细化三个模块构成。目标筛选在一个轻量级的特征提取网络中采用通道注意力和自注意力机制,在抑制噪声影响的同时对包含目标图像进行快速筛选,并提供稳定的定位热力图;目标定位利用掩码交叉注意力机制根据定位热力图优化粗尺度特征细化目标定位,并融入细尺度信息改善目标轮廓细节;轮廓细化通过轮廓点筛选消除上采样及噪声带来的轮廓不确定点获取准确的轮廓像素点置信度。对MSTAR数据集进行车辆像素级标注,建立SAR图像车辆数据集及大场景图像数据集用于网络测试。实验结果表明,该网络具有良好的像素级检测性能,可实现大场景SAR图像中车辆目标的快速精确检测。 展开更多
关键词 车辆目标检测 深度学习 注意力机制 合成孔径雷达 像素级目标检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部