Electronic structures and magnetoresistance (MR) of Co3 Cu5 and Co3 Cur models as well as their interface atom exchange models Co2 CuCoCu4 and Co2 CuCoCu6 are investigated by the tlrst-principles pseudopotential pla...Electronic structures and magnetoresistance (MR) of Co3 Cu5 and Co3 Cur models as well as their interface atom exchange models Co2 CuCoCu4 and Co2 CuCoCu6 are investigated by the tlrst-principles pseudopotential planewave method based on density functional theory. Charge transfer, magnetic moment, density of states, spin asymmetry factor, and MR ratio are discussed. The results show that the values of charge transfer and spin asymmetry factor at the Fermi level of Co layers are closely related to the neighbouring background of the Co layer. The Co layer with two sides adjacent to the Cu layer would transfer more charge to the Cu layer than other neighbouring background and have the largest spin asymmetry factor at the Fermi level. The Co layer with two neighbouring Co layers (interior Co) would gain a little charge and have the smallest spin asymmetry factor at the Fermi level. Two-current model is used to evaluate the MR ratio of Co2CuCoCu4 (Co2CuCoCu6) to be larger than that of Co3 Cu5 (Co3 CUT), which can be explained by the charge transfer and spin asymmetry factor.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 50371003, and the Foundation for Authors of National Excellent Doctoral Dissertation of China under Grant No 200334.
文摘Electronic structures and magnetoresistance (MR) of Co3 Cu5 and Co3 Cur models as well as their interface atom exchange models Co2 CuCoCu4 and Co2 CuCoCu6 are investigated by the tlrst-principles pseudopotential planewave method based on density functional theory. Charge transfer, magnetic moment, density of states, spin asymmetry factor, and MR ratio are discussed. The results show that the values of charge transfer and spin asymmetry factor at the Fermi level of Co layers are closely related to the neighbouring background of the Co layer. The Co layer with two sides adjacent to the Cu layer would transfer more charge to the Cu layer than other neighbouring background and have the largest spin asymmetry factor at the Fermi level. The Co layer with two neighbouring Co layers (interior Co) would gain a little charge and have the smallest spin asymmetry factor at the Fermi level. Two-current model is used to evaluate the MR ratio of Co2CuCoCu4 (Co2CuCoCu6) to be larger than that of Co3 Cu5 (Co3 CUT), which can be explained by the charge transfer and spin asymmetry factor.