期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于帝王蝶算法的CNN-GRU-LightGBM模型短期风电功率预测
1
作者
向阳
刘亚娟
+2 位作者
孙志伟
张效宁
卢建谋
《太阳能学报》
北大核心
2025年第1期105-114,共10页
风电集群大规模并网和跨季节使用产生的不确定性对风电功率预测播报的准确度提出更高的要求。为提高风电功率预测的准确度,提出一种基于帝王蝶优化算法(MBO)的卷积神经网络(CNN)-门控循环单元(GRU)-梯度提升学习(LightGBM)复合风电功率...
风电集群大规模并网和跨季节使用产生的不确定性对风电功率预测播报的准确度提出更高的要求。为提高风电功率预测的准确度,提出一种基于帝王蝶优化算法(MBO)的卷积神经网络(CNN)-门控循环单元(GRU)-梯度提升学习(LightGBM)复合风电功率预测模型。首先,分别建立CNN-GRU和LightGBM的风电功率预测模型,利用方差倒数法将两个模型加权组合为CNN-GRU-LightGBM复合模型;为优化模型中的连续参数,使用MBO对模型进行超参数优化。最后,选取珠海某海上风电场的短期风电功率数据对所提方法与已有预测方法进行对比,实验结果表明,该模型结合了CNN-GRU、LightGBM等模型的优点,预测误差更小,预测精度更高,拥有更强的季节普适性。
展开更多
关键词
风电功率预测
卷积神经网络
门控循环单元
梯度提升学习
帝王蝶算法
在线阅读
下载PDF
职称材料
题名
基于帝王蝶算法的CNN-GRU-LightGBM模型短期风电功率预测
1
作者
向阳
刘亚娟
孙志伟
张效宁
卢建谋
机构
华北电力大学控制与计算机工程学院
北京怀柔实验室
出处
《太阳能学报》
北大核心
2025年第1期105-114,共10页
基金
国家自然科学基金面上项目(62273144)。
文摘
风电集群大规模并网和跨季节使用产生的不确定性对风电功率预测播报的准确度提出更高的要求。为提高风电功率预测的准确度,提出一种基于帝王蝶优化算法(MBO)的卷积神经网络(CNN)-门控循环单元(GRU)-梯度提升学习(LightGBM)复合风电功率预测模型。首先,分别建立CNN-GRU和LightGBM的风电功率预测模型,利用方差倒数法将两个模型加权组合为CNN-GRU-LightGBM复合模型;为优化模型中的连续参数,使用MBO对模型进行超参数优化。最后,选取珠海某海上风电场的短期风电功率数据对所提方法与已有预测方法进行对比,实验结果表明,该模型结合了CNN-GRU、LightGBM等模型的优点,预测误差更小,预测精度更高,拥有更强的季节普适性。
关键词
风电功率预测
卷积神经网络
门控循环单元
梯度提升学习
帝王蝶算法
Keywords
wind power forecast
convolutional neural networks
gated circulation unit
gradient boosting learning
monarch butterfly algorithm
分类号
T614 [一般工业技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于帝王蝶算法的CNN-GRU-LightGBM模型短期风电功率预测
向阳
刘亚娟
孙志伟
张效宁
卢建谋
《太阳能学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部