期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络和模态转换的磁瓦内部缺陷检测方法
1
作者
卢后洪
谢罗峰
+3 位作者
朱杨洋
殷鸣
杜波
殷国富
《中国测试》
CAS
北大核心
2024年第2期22-27,共6页
针对人工检测磁瓦内部缺陷过程中需要成熟的经验知识,检测过程不稳定且效率较低等问题,设计一套智能化检测系统。受人工检测的启发,提出一种基于卷积神经网络和模态转换的磁瓦内部缺陷检测方法。将时域信号转换为时-频域语谱图,利用卷...
针对人工检测磁瓦内部缺陷过程中需要成熟的经验知识,检测过程不稳定且效率较低等问题,设计一套智能化检测系统。受人工检测的启发,提出一种基于卷积神经网络和模态转换的磁瓦内部缺陷检测方法。将时域信号转换为时-频域语谱图,利用卷积神经对语谱图提取特征并分类。为更精准地强调重要信息而抑制无关信息,将坐标注意力机制引入到卷积神经网络中。提出的基于卷积神经网络和模态转换的预测模型的准确率达到98.4%,证明提出的检测方法对于磁瓦内部缺陷检方法是有效的。实验结果表明,模态转换和坐标注意力机制能提升模型的性能。
展开更多
关键词
磁瓦
卷积神经网络(CNN)
内部缺陷
模态转换
注意力机制
在线阅读
下载PDF
职称材料
题名
基于卷积神经网络和模态转换的磁瓦内部缺陷检测方法
1
作者
卢后洪
谢罗峰
朱杨洋
殷鸣
杜波
殷国富
机构
四川大学机械工程学院
四川省特种设备检验研究院
出处
《中国测试》
CAS
北大核心
2024年第2期22-27,共6页
基金
中央高校基本业务费(2021SCU12146)。
文摘
针对人工检测磁瓦内部缺陷过程中需要成熟的经验知识,检测过程不稳定且效率较低等问题,设计一套智能化检测系统。受人工检测的启发,提出一种基于卷积神经网络和模态转换的磁瓦内部缺陷检测方法。将时域信号转换为时-频域语谱图,利用卷积神经对语谱图提取特征并分类。为更精准地强调重要信息而抑制无关信息,将坐标注意力机制引入到卷积神经网络中。提出的基于卷积神经网络和模态转换的预测模型的准确率达到98.4%,证明提出的检测方法对于磁瓦内部缺陷检方法是有效的。实验结果表明,模态转换和坐标注意力机制能提升模型的性能。
关键词
磁瓦
卷积神经网络(CNN)
内部缺陷
模态转换
注意力机制
Keywords
magnetic tile
convolutional neural network(CNN)
internal defect
modal transformation
attention mechanism
分类号
TB9 [机械工程—测试计量技术及仪器]
TP391.4 [自动化与计算机技术—计算机应用技术]
TP23 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络和模态转换的磁瓦内部缺陷检测方法
卢后洪
谢罗峰
朱杨洋
殷鸣
杜波
殷国富
《中国测试》
CAS
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部