该文章研究双频工作同轴双电子注回旋管。数值计算和粒子模拟结果表明同轴双电子注回旋管可以同时工作在两个不同的频率,且由于两个电子注间的非线性耦合,高次回旋谐波所对应模式的功率显著增强。完成了双频工作的同轴双电子注回旋管的...该文章研究双频工作同轴双电子注回旋管。数值计算和粒子模拟结果表明同轴双电子注回旋管可以同时工作在两个不同的频率,且由于两个电子注间的非线性耦合,高次回旋谐波所对应模式的功率显著增强。完成了双频工作的同轴双电子注回旋管的原理样管加工并进行了验证性实验,实验测得两个工作频率分别为0.11 THz和0.22 THz,输出功率20 k W,并提出了一种分离双频工作同轴双电子注回旋管中两个不同频率电磁波功率的方法。展开更多
This paper considers the frequency-quadrupling three-cavity gyroklystrons with successive frequency-doubling in each cavity.The cavities of 225 GHz frequency-quadrupling gyroklystron are designed with the scattering m...This paper considers the frequency-quadrupling three-cavity gyroklystrons with successive frequency-doubling in each cavity.The cavities of 225 GHz frequency-quadrupling gyroklystron are designed with the scattering matrices method and the possible operating mode are discussed.With the point-gap theory,the starting currents of the possible operating modes and the potential parasitic modes in the output cavity are calculated. The optimal operating mode is proposed under consideration of the mode competition and the power capacity of the cavity.展开更多
This paper analyses a three-cavity frequency-quadrupling terahertz gyroklystron with successive frequency-doubling in each cavity with self-consistent nonlinear theory. The beam-wave interaction efficiency and the ele...This paper analyses a three-cavity frequency-quadrupling terahertz gyroklystron with successive frequency-doubling in each cavity with self-consistent nonlinear theory. The beam-wave interaction efficiency and the electron bunching process are studied. The variation of output efficiency with the length of drift tubes and output power and the variation of Ohmic loss with the length of output cavity are considered. Numerical simulations predict an optimal output efficiency of 1.8%, a power output of more than 2 kW and a gain of 33 dB after taking into account Ohmic losses when the frequency-quadrupling gyroklystron, driven by a 40-kV, 3-A electron beam and 1 Watt input power, operates at 225 CHz.展开更多
基金National Basic Research Program under Grant(2014CB339801)Key Program of National Natural Science Foundation of China(61231005)~~
文摘该文章研究双频工作同轴双电子注回旋管。数值计算和粒子模拟结果表明同轴双电子注回旋管可以同时工作在两个不同的频率,且由于两个电子注间的非线性耦合,高次回旋谐波所对应模式的功率显著增强。完成了双频工作的同轴双电子注回旋管的原理样管加工并进行了验证性实验,实验测得两个工作频率分别为0.11 THz和0.22 THz,输出功率20 k W,并提出了一种分离双频工作同轴双电子注回旋管中两个不同频率电磁波功率的方法。
基金Supported in part by the National Key Research and Development Program of China under Grant 2017YFA0701000in part by the Natu⁃ral Science Foundation of China(61988102)the Fundamental Research Funds for the Central Universities under(A03018023601003).
基金Supported by the National Key Research and Development Program of China(2017YFA0701000)the Fundamental Research Funds for the Central Universities(A03018023601003)
基金Supported by National Natural Science Foundation of China(61701084,61505022)National Key Research and Development Program of China(2018YFF01013001,2017YFA0701000)。
基金Project supported by National Natural Science Foundation of China (Grant No 10676110)National High Technology Research and Development Program of China (Grant No 2007BC310401)
文摘This paper considers the frequency-quadrupling three-cavity gyroklystrons with successive frequency-doubling in each cavity.The cavities of 225 GHz frequency-quadrupling gyroklystron are designed with the scattering matrices method and the possible operating mode are discussed.With the point-gap theory,the starting currents of the possible operating modes and the potential parasitic modes in the output cavity are calculated. The optimal operating mode is proposed under consideration of the mode competition and the power capacity of the cavity.
基金Project supported by National Natural Science Foundation of China (Grant No 10676110)973 Program of China (Grant No2007CB310401)
文摘This paper analyses a three-cavity frequency-quadrupling terahertz gyroklystron with successive frequency-doubling in each cavity with self-consistent nonlinear theory. The beam-wave interaction efficiency and the electron bunching process are studied. The variation of output efficiency with the length of drift tubes and output power and the variation of Ohmic loss with the length of output cavity are considered. Numerical simulations predict an optimal output efficiency of 1.8%, a power output of more than 2 kW and a gain of 33 dB after taking into account Ohmic losses when the frequency-quadrupling gyroklystron, driven by a 40-kV, 3-A electron beam and 1 Watt input power, operates at 225 CHz.