Aim To study the Lie symmetries and conserved quantities of the dynamical equationsof relative motion for holonomic mechanical systems. Methods Lie's method of the invariance of ordinary differential equations u...Aim To study the Lie symmetries and conserved quantities of the dynamical equationsof relative motion for holonomic mechanical systems. Methods Lie's method of the invariance of ordinary differential equations under infinitesimal transformations was used. Results and Conclusion The determining equaiton of the Lie symmetries for the dynamical equationS of relative motion is established.The structure quation and the form conserved quantities are obtained. An example iD illustrate the application of the result is given.展开更多
Aim To study the Lie symmetries and conserved quantities of holonomic mechanical systems in terms of qnasi-coordinates. Methods The definition of an infinitesimal generator for the holonomic mechanical systems in te...Aim To study the Lie symmetries and conserved quantities of holonomic mechanical systems in terms of qnasi-coordinates. Methods The definition of an infinitesimal generator for the holonomic mechanical systems in terms of quasi-coordinates was given. Lie's method of the invariance of ordinary differential equations under infinitesimal transformations was used. Results and Conclusion The determining equations of the Lie symmetries of holonomic mechanical systems in terms of quassi-coordinates are established. The structure equation and the form of conserved quantities are obtained. An example to illustrate the applicaiton of the result is given.展开更多
By analogue with the methods and processes in continuous mechanics, a Lagrangian formulation and a Hamiltonian formulation of discrete mechanics are obtained. The dynamical equations including Euler Lagrange equations...By analogue with the methods and processes in continuous mechanics, a Lagrangian formulation and a Hamiltonian formulation of discrete mechanics are obtained. The dynamical equations including Euler Lagrange equations and Hamilton's canonical equations of the discrete nonconservative holonomic systems are derived on a discrete variational principle. Some illustrative examples are also given.展开更多
文摘Aim To study the Lie symmetries and conserved quantities of the dynamical equationsof relative motion for holonomic mechanical systems. Methods Lie's method of the invariance of ordinary differential equations under infinitesimal transformations was used. Results and Conclusion The determining equaiton of the Lie symmetries for the dynamical equationS of relative motion is established.The structure quation and the form conserved quantities are obtained. An example iD illustrate the application of the result is given.
文摘Aim To study the Lie symmetries and conserved quantities of holonomic mechanical systems in terms of qnasi-coordinates. Methods The definition of an infinitesimal generator for the holonomic mechanical systems in terms of quasi-coordinates was given. Lie's method of the invariance of ordinary differential equations under infinitesimal transformations was used. Results and Conclusion The determining equations of the Lie symmetries of holonomic mechanical systems in terms of quassi-coordinates are established. The structure equation and the form of conserved quantities are obtained. An example to illustrate the applicaiton of the result is given.
基金Project supported by the National Natural Science Foundation of China (Grant No 19572018).
文摘By analogue with the methods and processes in continuous mechanics, a Lagrangian formulation and a Hamiltonian formulation of discrete mechanics are obtained. The dynamical equations including Euler Lagrange equations and Hamilton's canonical equations of the discrete nonconservative holonomic systems are derived on a discrete variational principle. Some illustrative examples are also given.