Pulse decomposition has been proven to be efficient to analyze complicated signals and it is introduced into the photo-acoustic and thermo-acoustic tomography to eliminate reconstruction distortions caused by negative...Pulse decomposition has been proven to be efficient to analyze complicated signals and it is introduced into the photo-acoustic and thermo-acoustic tomography to eliminate reconstruction distortions caused by negative lobes.During image reconstruction,negative lobes bring errors in the estimation of acoustic pulse amplitude,which is closely related to the distribution of absorption coefficient.The negative lobe error degrades imaging quality seriously in limited-view conditions because it cannot be offset so well as in full-view conditions.Therefore,a pulse decomposition formula is provided with detailed deduction to eliminate the negative lobe error and is incorporated into the popular delay-and-sum method for better reconstructing the image without additional complicated computation.Numerical experiments show that the pulse decomposition improves the image quality obviously in the limited-view conditions,such as separating adjacent absorbers,discovering a small absorber despite disturbance from a big absorber nearby,etc.展开更多
A theoretical model to analyze the nonlinear circumferential guided wave(CGW) propagation in a composite circular tube(CCT) is established. The response features of nonlinear CGWs to early damage [denoted by variation...A theoretical model to analyze the nonlinear circumferential guided wave(CGW) propagation in a composite circular tube(CCT) is established. The response features of nonlinear CGWs to early damage [denoted by variations in third-order elastic constants(TOECs)] in an inner layer of CCT are investigated. On the basis of the modal expansion approach, the second-harmonic field of primary CGW propagation can be assumed to be a linear sum of a series of double-frequency CGW(DFCGW) modes. The quantitative relationship of DFCGW mode versus the relative changes in the inner layer TOECs is then investigated. It is found that the changes in the inner layer TOECs of CCT will obviously affect the driving source of DFCGW mode and its modal expansion coefficient, which is intrinsically able to influence the efficiency of cumulative second-harmonic generation(SHG) by primary CGW propagation. Theoretical analyses and numerical simulations demonstrate that the second harmonic of primary CGW is monotonic and very sensitive to the changes in the inner layer TOECs of CCT, while the linear properties of primary CGW propagation almost remain unchanged. Our results provide a potential application for accurately characterizing the level of early damage in the inner layer of CCT through the efficiency of cumulative SHG by primary CGW propagation.展开更多
基金supported by the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(Grant Nos.11274167,11274171,61201450,61201495,and 61302175)the Chongqing Science and Technology Commission of China(Grant Nos.2012jjA40058 and 2012jjA40006)
文摘Pulse decomposition has been proven to be efficient to analyze complicated signals and it is introduced into the photo-acoustic and thermo-acoustic tomography to eliminate reconstruction distortions caused by negative lobes.During image reconstruction,negative lobes bring errors in the estimation of acoustic pulse amplitude,which is closely related to the distribution of absorption coefficient.The negative lobe error degrades imaging quality seriously in limited-view conditions because it cannot be offset so well as in full-view conditions.Therefore,a pulse decomposition formula is provided with detailed deduction to eliminate the negative lobe error and is incorporated into the popular delay-and-sum method for better reconstructing the image without additional complicated computation.Numerical experiments show that the pulse decomposition improves the image quality obviously in the limited-view conditions,such as separating adjacent absorbers,discovering a small absorber despite disturbance from a big absorber nearby,etc.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11834008,11474361,11632004,and 11622430)
文摘A theoretical model to analyze the nonlinear circumferential guided wave(CGW) propagation in a composite circular tube(CCT) is established. The response features of nonlinear CGWs to early damage [denoted by variations in third-order elastic constants(TOECs)] in an inner layer of CCT are investigated. On the basis of the modal expansion approach, the second-harmonic field of primary CGW propagation can be assumed to be a linear sum of a series of double-frequency CGW(DFCGW) modes. The quantitative relationship of DFCGW mode versus the relative changes in the inner layer TOECs is then investigated. It is found that the changes in the inner layer TOECs of CCT will obviously affect the driving source of DFCGW mode and its modal expansion coefficient, which is intrinsically able to influence the efficiency of cumulative second-harmonic generation(SHG) by primary CGW propagation. Theoretical analyses and numerical simulations demonstrate that the second harmonic of primary CGW is monotonic and very sensitive to the changes in the inner layer TOECs of CCT, while the linear properties of primary CGW propagation almost remain unchanged. Our results provide a potential application for accurately characterizing the level of early damage in the inner layer of CCT through the efficiency of cumulative SHG by primary CGW propagation.