针对可再生能源(renewable energy sources,RES)和储能系统(energy storage system,ESS)组成的混合微电网,由于不同微源间特性、容量等存在差异,造成控制方案多样,不利于系统扩展和能量管理。通过系统频率建立逆变器与交流微网间有功功...针对可再生能源(renewable energy sources,RES)和储能系统(energy storage system,ESS)组成的混合微电网,由于不同微源间特性、容量等存在差异,造成控制方案多样,不利于系统扩展和能量管理。通过系统频率建立逆变器与交流微网间有功功率交换关系,通过直流母线电压建立逆变器与前级可再生能源或者储能单元间的能量平衡,提出一种通用形式的控制结构。逆变器作为联通前级微源与后级交流微网的媒介,采用电压控制模式,能够实现能量的双向流动和直流母线电压稳定控制。根据提出的微源控制策略,基于微网频率信号,该文又提出一种孤岛微电网能量管理方案。该方案依赖本地信息进行能量管理,不需要通信,系统可靠性高。仿真和实验验证该策略的可行性。展开更多
During public health emergencies,the diffusion of negative information can exacerbate the transmission of adverse emotions,such as fear and anxiety.These emotions can adversely affect immune function and,consequently,...During public health emergencies,the diffusion of negative information can exacerbate the transmission of adverse emotions,such as fear and anxiety.These emotions can adversely affect immune function and,consequently,influence the spread of the epidemic.In this study,we established a coupled model incorporating environmental factors to explore the coevolution dynamic process of information-emotions-epidemic dynamics in activity-driven multiplex networks.In this model,environmental factors refer to the external conditions or pressures that affect the spread of information,emotions,and epidemics.These factors include media coverage,public opinion,and the prevalence of diseases in the neighborhood.These layers are dynamically cross-coupled,where the environmental factors in the information layer are influenced by the emotional layer;the higher the levels of anxious states among neighboring individuals,the greater the likelihood of information diffusion.Although environmental factors in the emotional layer are influenced by both the information and epidemic layers,they come from the factors of global information and the proportion of local infections among surrounding neighbors.Subsequently,we utilized the microscopic Markov chain approach to describe the dynamic processes,thereby obtaining the epidemic threshold.Finally,conclusions are drawn through numerical modeling and analysis.The conclusions suggest that when negative information increases,the probability of the transmission of anxious states across the population increases.The transmission of anxious states increases the final size of the disease and decreases its outbreak threshold.Reducing the impact of environmental factors at both the informational and emotional levels is beneficial for controlling the scale of the spread of the epidemic.Our findings can provide a reference for improving public health awareness and behavioral decision-making,mitigating the adverse impacts of anxious states,and ultimately controlling the spread of epidemics.展开更多
文摘针对可再生能源(renewable energy sources,RES)和储能系统(energy storage system,ESS)组成的混合微电网,由于不同微源间特性、容量等存在差异,造成控制方案多样,不利于系统扩展和能量管理。通过系统频率建立逆变器与交流微网间有功功率交换关系,通过直流母线电压建立逆变器与前级可再生能源或者储能单元间的能量平衡,提出一种通用形式的控制结构。逆变器作为联通前级微源与后级交流微网的媒介,采用电压控制模式,能够实现能量的双向流动和直流母线电压稳定控制。根据提出的微源控制策略,基于微网频率信号,该文又提出一种孤岛微电网能量管理方案。该方案依赖本地信息进行能量管理,不需要通信,系统可靠性高。仿真和实验验证该策略的可行性。
基金partially supported by the National Natural Science Foundation of China(Grant No.72174121)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Natural Science Foundation of Shanghai(Grant No.21ZR1444100)。
文摘During public health emergencies,the diffusion of negative information can exacerbate the transmission of adverse emotions,such as fear and anxiety.These emotions can adversely affect immune function and,consequently,influence the spread of the epidemic.In this study,we established a coupled model incorporating environmental factors to explore the coevolution dynamic process of information-emotions-epidemic dynamics in activity-driven multiplex networks.In this model,environmental factors refer to the external conditions or pressures that affect the spread of information,emotions,and epidemics.These factors include media coverage,public opinion,and the prevalence of diseases in the neighborhood.These layers are dynamically cross-coupled,where the environmental factors in the information layer are influenced by the emotional layer;the higher the levels of anxious states among neighboring individuals,the greater the likelihood of information diffusion.Although environmental factors in the emotional layer are influenced by both the information and epidemic layers,they come from the factors of global information and the proportion of local infections among surrounding neighbors.Subsequently,we utilized the microscopic Markov chain approach to describe the dynamic processes,thereby obtaining the epidemic threshold.Finally,conclusions are drawn through numerical modeling and analysis.The conclusions suggest that when negative information increases,the probability of the transmission of anxious states across the population increases.The transmission of anxious states increases the final size of the disease and decreases its outbreak threshold.Reducing the impact of environmental factors at both the informational and emotional levels is beneficial for controlling the scale of the spread of the epidemic.Our findings can provide a reference for improving public health awareness and behavioral decision-making,mitigating the adverse impacts of anxious states,and ultimately controlling the spread of epidemics.