Internet资源的指数级增长促进了个性化服务的发展.针对传统的用户兴趣建模方法在准确率和增量处理能力方面的不足,提出了一种新的基于概念聚类的用户兴趣建模方法UIM2C2(User Interest Modeling Method based on Conceptual Clusterin...Internet资源的指数级增长促进了个性化服务的发展.针对传统的用户兴趣建模方法在准确率和增量处理能力方面的不足,提出了一种新的基于概念聚类的用户兴趣建模方法UIM2C2(User Interest Modeling Method based on Conceptual Clustering).该方法首先通过分析用户访问的历史文档构造后缀树结构,然后选择不同的相似度阈值,以不同的粒度合并基本簇.依据不同阈值条件下合并的基本簇之间的包含关系,生成用户的兴趣层次.UIM2C2方法是针对文档的一个增量式、无监督的概念学习方法,因此用户描述文件可以轻易的获取和更新.最后,通过数据集20NewsGroup上的实验验证了UIM2C2方法在兴趣预测方面的有效性.展开更多
为快速准确地计算时间序列数据相似度,引入快速动态时间规划距离(fast dynamic time warping,FDTW),提出了基于FDTW的模糊C均值算法和模糊C中心点聚类算法。FDTW通过对数据序列进行拉伸和压缩匹配时间序列数据,只要形状相同,即使发生时...为快速准确地计算时间序列数据相似度,引入快速动态时间规划距离(fast dynamic time warping,FDTW),提出了基于FDTW的模糊C均值算法和模糊C中心点聚类算法。FDTW通过对数据序列进行拉伸和压缩匹配时间序列数据,只要形状相同,即使发生时间位移也可以准确识别,同时解决了传统DTW计算效率较低的问题。试验结果表明,提出的算法仍能保证聚类的精度。展开更多
社区探测是图和网络领域非常关键的技术之一,其中聚类方法扮演了重要的角色。针对层次聚类算法较高的时间复杂度,在信息理论框架下提出一种改进的社区探测方法 p IBD。p IBD把单部网络变换成二部图网络,预测k值,并基于信息瓶颈理论进行...社区探测是图和网络领域非常关键的技术之一,其中聚类方法扮演了重要的角色。针对层次聚类算法较高的时间复杂度,在信息理论框架下提出一种改进的社区探测方法 p IBD。p IBD把单部网络变换成二部图网络,预测k值,并基于信息瓶颈理论进行划分式聚类。实验结果表明,p IBD方法可以获得较已有层次聚类方法更高的准确率。展开更多
文摘Internet资源的指数级增长促进了个性化服务的发展.针对传统的用户兴趣建模方法在准确率和增量处理能力方面的不足,提出了一种新的基于概念聚类的用户兴趣建模方法UIM2C2(User Interest Modeling Method based on Conceptual Clustering).该方法首先通过分析用户访问的历史文档构造后缀树结构,然后选择不同的相似度阈值,以不同的粒度合并基本簇.依据不同阈值条件下合并的基本簇之间的包含关系,生成用户的兴趣层次.UIM2C2方法是针对文档的一个增量式、无监督的概念学习方法,因此用户描述文件可以轻易的获取和更新.最后,通过数据集20NewsGroup上的实验验证了UIM2C2方法在兴趣预测方面的有效性.
文摘为快速准确地计算时间序列数据相似度,引入快速动态时间规划距离(fast dynamic time warping,FDTW),提出了基于FDTW的模糊C均值算法和模糊C中心点聚类算法。FDTW通过对数据序列进行拉伸和压缩匹配时间序列数据,只要形状相同,即使发生时间位移也可以准确识别,同时解决了传统DTW计算效率较低的问题。试验结果表明,提出的算法仍能保证聚类的精度。
文摘社区探测是图和网络领域非常关键的技术之一,其中聚类方法扮演了重要的角色。针对层次聚类算法较高的时间复杂度,在信息理论框架下提出一种改进的社区探测方法 p IBD。p IBD把单部网络变换成二部图网络,预测k值,并基于信息瓶颈理论进行划分式聚类。实验结果表明,p IBD方法可以获得较已有层次聚类方法更高的准确率。