期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于混合遗传算法的磁控形状记忆合金驱动器磁滞模型优化 被引量:2
1
作者 纪华伟 刘毛娜 胡小平 《中国机械工程》 EI CAS CSCD 北大核心 2015年第4期508-512,共5页
为了消除或减小磁滞非线性特性对磁控形状记忆合金驱动器定位精度的影响,应用BP神经网络建立了磁控形状记忆合金驱动器磁滞模型。针对BP网络算法存在的不足,以及网络结构、初始连接权值和阈值的选择对BP网络训练的影响很大等问题,提出... 为了消除或减小磁滞非线性特性对磁控形状记忆合金驱动器定位精度的影响,应用BP神经网络建立了磁控形状记忆合金驱动器磁滞模型。针对BP网络算法存在的不足,以及网络结构、初始连接权值和阈值的选择对BP网络训练的影响很大等问题,提出一种混合遗传算法对神经网络磁滞模型的权值和阈值进行优化。将优化后的参数赋值给BP神经网络重新训练,结果表明,优化后的磁滞模型训练误差绝对值由25nm减小到5nm,有较好的收敛性。 展开更多
关键词 磁控形状记忆合金驱动器 磁滞非线性 BP神经网络 遗传算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部