Objective To evaluate the reliability of three dimensional spiral fast spin echo pseudo-continuous arterial spin labeling(3 D pc-ASL) in measuring cerebral blood flow(CBF) with different post-labeling delay time(PLD) ...Objective To evaluate the reliability of three dimensional spiral fast spin echo pseudo-continuous arterial spin labeling(3 D pc-ASL) in measuring cerebral blood flow(CBF) with different post-labeling delay time(PLD) in the resting state and the right finger taping state.Methods 3 D pc-ASL and three dimensional T1-weighted fast spoiled gradient recalled echo(3 D T1-FSPGR) sequence were applied to eight healthy subjects twice at the same time each day for one week interval. ASL data acquisition was performed with post-labeling delay time(PLD) 1.5 seconds and 2.0 seconds in the resting state and the right finger taping state respectively. CBF mapping was calculated and CBF value of both the gray matter(GM) and white matter(WM) was automatically extracted. The reliability was evaluated using the intraclass correlation coefficient(ICC) and Bland and Altman plot.Results ICC of the GM(0.84) and WM(0.92) was lower at PLD 1.5 seconds than that(GM, 0.88; WM, 0.94) at PLD 2.0 seconds in the resting state, and ICC of GM(0.88) was higher in the right finger taping state than that in the resting state at PLD 1.5 seconds. ICC of the GM and WM was 0.71 and 0.78 for PLD 1.5 seconds and PLD 2.0 seconds in the resting state at the first scan, and ICC of the GM and WM was 0.83 and 0.79 at the second scan, respectively.Conclusion This work demonstrated that 3 D pc-ASL might be a reliable imaging technique to measure CBF over the whole brain at different PLD in the resting state or controlled state.展开更多
Objective To evaluate the value of texture features derived from intravoxel incoherent motion(IVIM) parameters for differentiating pancreatic neuroendocrine tumor(pNET) from pancreatic adenocarcinoma(PAC).Methods Eigh...Objective To evaluate the value of texture features derived from intravoxel incoherent motion(IVIM) parameters for differentiating pancreatic neuroendocrine tumor(pNET) from pancreatic adenocarcinoma(PAC).Methods Eighteen patients with pNET and 32 patients with PAC were retrospectively enrolled in this study. All patients underwent diffusion-weighted imaging with 10 b values used(from 0 to 800 s/mm2). Based on IVIM model, perfusion-related parameters including perfusion fraction(f), fast component of diffusion(Dfast) and true diffusion parameter slow component of diffusion(Dslow) were calculated on a voxel-by-voxel basis and reorganized into gray-encoded parametric maps. The mean value of each IVIM parameter and texture features [Angular Second Moment(ASM), Inverse Difference Moment(IDM), Correlation, Contrast and Entropy] values of IVIM parameters were measured. Independent sample t-test or Mann-Whitney U test were performed for the betweengroup comparison of quantitative data. Regression model was established by using binary logistic regression analysis, and receiver operating characteristic(ROC) curve was plotted to evaluate the diagnostic efficiency.Results The mean f value of the pNET group were significantly higher than that of the PAC group(27.0% vs. 19.0%, P = 0.001), while the mean values of Dfast and Dslow showed no significant differences between the two groups. All texture features(ASM, IDM, Correlation, Contrast and Entropy) of each IVIM parameter showed significant differences between the pNET and PAC groups(P = 0.000-0.043). Binary logistic regression analysis showed that texture ASM of Dfast and texture Correlation of Dslow were considered as the specific imaging variables for the differential diagnosis of pNET and PAC. ROC analysis revealed that multiple texture features presented better diagnostic performance than IVIM parameters(AUC 0.849-0.899 vs. 0.526-0.776), and texture ASM of Dfast combined with Correlation of Dslow in the model of logistic regression had largest area under ROC curve for distinguishing pNET from PAC(AUC 0.934, cutoff 0.378, sensitivity 0.889, specificity 0.854). Conclusion Texture analysis of IVIM parameters could be an effective and noninvasive tool to differentiate pNET from PAC.展开更多
Objective To investigate cerebral structural signatures of the bulbar-and spinal-onset amyotrophic lateral sclerosis(ALS) using voxel-based morphometry on magnetic resonance imaging.Methods The MR structural images of...Objective To investigate cerebral structural signatures of the bulbar-and spinal-onset amyotrophic lateral sclerosis(ALS) using voxel-based morphometry on magnetic resonance imaging.Methods The MR structural images of the brain were obtained from 65 ALS patients(15 bulbar-onset, 50 spinalonset) and 65 normal controls(NC) on a 3.0 T MRI system. Gray matter(GM) volume changes were investigated by voxel-based morphometry, and the distribution of the brain regions with volume changes was compared between ALS and normal controls, as well as between bulbar-onset and spinal-onset ALS based on Neuromorphometrics atlas.Results On voxel-level the decreased volume of brain regions in ALS patients was located in the right precentral gyrus(r Prc Gy) and right middle frontal gyrus compared with that in NC. The bulbar-onset ALS presented extramotor cortex atrophy(fronto-temporal pattern), including left medial orbital gyrus, left inferior temporal gyrus and right middle temporal gyrus; the spinal-onset ALS suffered from motor cortex atrophy(r Prc Gy dominance) and extra-motor cortex atrophy(fronto-temporal and extra-fronto-temporal pattern) compared with NC. The spinal-onset ALS featured by GM volume loss of left postcentral gyrus and bulbar-onset ALS featured by GM volume loss of left middle temporal gyrus compared with each other. Conclusions The asymmetric GM atrophy of the motor cortex and extra-motor cortex represents the common MRI structural signatures of spinal-onset ALS, and sole extra-motor cortex atrophy represents the structural signatures of bulbar-onset ALS. The present study also demonstrated that the pattern of GM damage is likely to distribute wider in spinal-onset ALS than in bulbar-onset ALS.展开更多
Objective To evaluate the optic nerve impairment using MRI histogram texture analysis in the patients with optic neuritis.Methods The study included 60 patients with optic neuritis and 20 normal controls. The coronal ...Objective To evaluate the optic nerve impairment using MRI histogram texture analysis in the patients with optic neuritis.Methods The study included 60 patients with optic neuritis and 20 normal controls. The coronal T2 weighted imaging(T2 WI) with fat saturation and enhanced T1 weighted imaging(T1 WI) were performed to evaluate the optic nerve. MRI histogram texture features of the involved optic nerve were measured on the corresponding coronal T2 WI images. The normal optic nerve(NON) was measured in the posterior 1/3 parts of the optic nerve. Kruskal-Wallis one-way ANOVA was used to compare the difference of texture features and receiver operating characteristic(ROC) curve were performed to evaluate the diagnostic value of texture features for the optic nerve impairment among the affected optic nerve with enhancement(ONwEN), affected optic nerve without enhancement(ONwoEN), contralateral normal appearing optic nerve(NAON) and NON. Results The histogram texture Energy and Entropy presented significant differences for ONwEN vs. ONwoEN(both P = 0.000), ONwEN vs. NON(both P = 0.000) and NAON vs. NON(both P < 0.05). ROC analysis demonstrated that the area under the curve(AUC) of histogram texture Energy were 0.758, 0.795 and 0.701 for ONwEN vs. ONwoEN, ONwEN vs. NON and NAON vs. NON, AUC of Entropy were 0.758, 0.795 and 0.707 for ONwEN vs. ONwoEN, ONwEN vs. NON and NAON vs. NON.Conclusion The altered MRI histogram texture Energy and Entropy could be considered as a surrogate for MRI enhancement to evaluate the involved optic nerve and normal-appearing optic nerve in optic neuritis.展开更多
基金Supported by the Foundation for Medical and Health Sci&Tech Innovation Project of Sanya(2016YW37)the Special Financial Grant from China Postdoctoral Science Foundation(2014T70960)
文摘Objective To evaluate the reliability of three dimensional spiral fast spin echo pseudo-continuous arterial spin labeling(3 D pc-ASL) in measuring cerebral blood flow(CBF) with different post-labeling delay time(PLD) in the resting state and the right finger taping state.Methods 3 D pc-ASL and three dimensional T1-weighted fast spoiled gradient recalled echo(3 D T1-FSPGR) sequence were applied to eight healthy subjects twice at the same time each day for one week interval. ASL data acquisition was performed with post-labeling delay time(PLD) 1.5 seconds and 2.0 seconds in the resting state and the right finger taping state respectively. CBF mapping was calculated and CBF value of both the gray matter(GM) and white matter(WM) was automatically extracted. The reliability was evaluated using the intraclass correlation coefficient(ICC) and Bland and Altman plot.Results ICC of the GM(0.84) and WM(0.92) was lower at PLD 1.5 seconds than that(GM, 0.88; WM, 0.94) at PLD 2.0 seconds in the resting state, and ICC of GM(0.88) was higher in the right finger taping state than that in the resting state at PLD 1.5 seconds. ICC of the GM and WM was 0.71 and 0.78 for PLD 1.5 seconds and PLD 2.0 seconds in the resting state at the first scan, and ICC of the GM and WM was 0.83 and 0.79 at the second scan, respectively.Conclusion This work demonstrated that 3 D pc-ASL might be a reliable imaging technique to measure CBF over the whole brain at different PLD in the resting state or controlled state.
文摘Objective To evaluate the value of texture features derived from intravoxel incoherent motion(IVIM) parameters for differentiating pancreatic neuroendocrine tumor(pNET) from pancreatic adenocarcinoma(PAC).Methods Eighteen patients with pNET and 32 patients with PAC were retrospectively enrolled in this study. All patients underwent diffusion-weighted imaging with 10 b values used(from 0 to 800 s/mm2). Based on IVIM model, perfusion-related parameters including perfusion fraction(f), fast component of diffusion(Dfast) and true diffusion parameter slow component of diffusion(Dslow) were calculated on a voxel-by-voxel basis and reorganized into gray-encoded parametric maps. The mean value of each IVIM parameter and texture features [Angular Second Moment(ASM), Inverse Difference Moment(IDM), Correlation, Contrast and Entropy] values of IVIM parameters were measured. Independent sample t-test or Mann-Whitney U test were performed for the betweengroup comparison of quantitative data. Regression model was established by using binary logistic regression analysis, and receiver operating characteristic(ROC) curve was plotted to evaluate the diagnostic efficiency.Results The mean f value of the pNET group were significantly higher than that of the PAC group(27.0% vs. 19.0%, P = 0.001), while the mean values of Dfast and Dslow showed no significant differences between the two groups. All texture features(ASM, IDM, Correlation, Contrast and Entropy) of each IVIM parameter showed significant differences between the pNET and PAC groups(P = 0.000-0.043). Binary logistic regression analysis showed that texture ASM of Dfast and texture Correlation of Dslow were considered as the specific imaging variables for the differential diagnosis of pNET and PAC. ROC analysis revealed that multiple texture features presented better diagnostic performance than IVIM parameters(AUC 0.849-0.899 vs. 0.526-0.776), and texture ASM of Dfast combined with Correlation of Dslow in the model of logistic regression had largest area under ROC curve for distinguishing pNET from PAC(AUC 0.934, cutoff 0.378, sensitivity 0.889, specificity 0.854). Conclusion Texture analysis of IVIM parameters could be an effective and noninvasive tool to differentiate pNET from PAC.
基金Supported by the grant of the National Natural Sciences Foundation of China(30470512)
文摘Objective To investigate cerebral structural signatures of the bulbar-and spinal-onset amyotrophic lateral sclerosis(ALS) using voxel-based morphometry on magnetic resonance imaging.Methods The MR structural images of the brain were obtained from 65 ALS patients(15 bulbar-onset, 50 spinalonset) and 65 normal controls(NC) on a 3.0 T MRI system. Gray matter(GM) volume changes were investigated by voxel-based morphometry, and the distribution of the brain regions with volume changes was compared between ALS and normal controls, as well as between bulbar-onset and spinal-onset ALS based on Neuromorphometrics atlas.Results On voxel-level the decreased volume of brain regions in ALS patients was located in the right precentral gyrus(r Prc Gy) and right middle frontal gyrus compared with that in NC. The bulbar-onset ALS presented extramotor cortex atrophy(fronto-temporal pattern), including left medial orbital gyrus, left inferior temporal gyrus and right middle temporal gyrus; the spinal-onset ALS suffered from motor cortex atrophy(r Prc Gy dominance) and extra-motor cortex atrophy(fronto-temporal and extra-fronto-temporal pattern) compared with NC. The spinal-onset ALS featured by GM volume loss of left postcentral gyrus and bulbar-onset ALS featured by GM volume loss of left middle temporal gyrus compared with each other. Conclusions The asymmetric GM atrophy of the motor cortex and extra-motor cortex represents the common MRI structural signatures of spinal-onset ALS, and sole extra-motor cortex atrophy represents the structural signatures of bulbar-onset ALS. The present study also demonstrated that the pattern of GM damage is likely to distribute wider in spinal-onset ALS than in bulbar-onset ALS.
文摘Objective To evaluate the optic nerve impairment using MRI histogram texture analysis in the patients with optic neuritis.Methods The study included 60 patients with optic neuritis and 20 normal controls. The coronal T2 weighted imaging(T2 WI) with fat saturation and enhanced T1 weighted imaging(T1 WI) were performed to evaluate the optic nerve. MRI histogram texture features of the involved optic nerve were measured on the corresponding coronal T2 WI images. The normal optic nerve(NON) was measured in the posterior 1/3 parts of the optic nerve. Kruskal-Wallis one-way ANOVA was used to compare the difference of texture features and receiver operating characteristic(ROC) curve were performed to evaluate the diagnostic value of texture features for the optic nerve impairment among the affected optic nerve with enhancement(ONwEN), affected optic nerve without enhancement(ONwoEN), contralateral normal appearing optic nerve(NAON) and NON. Results The histogram texture Energy and Entropy presented significant differences for ONwEN vs. ONwoEN(both P = 0.000), ONwEN vs. NON(both P = 0.000) and NAON vs. NON(both P < 0.05). ROC analysis demonstrated that the area under the curve(AUC) of histogram texture Energy were 0.758, 0.795 and 0.701 for ONwEN vs. ONwoEN, ONwEN vs. NON and NAON vs. NON, AUC of Entropy were 0.758, 0.795 and 0.707 for ONwEN vs. ONwoEN, ONwEN vs. NON and NAON vs. NON.Conclusion The altered MRI histogram texture Energy and Entropy could be considered as a surrogate for MRI enhancement to evaluate the involved optic nerve and normal-appearing optic nerve in optic neuritis.