期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于粒子群-最小二乘支持向量机模型的矿山爆破振动速度预测 被引量:7
1
作者 何理 刘易和 +3 位作者 李琳娜 陈江伟 姚颖康 刘昌邦 《金属矿山》 CAS 北大核心 2022年第7期145-150,共6页
爆破地震危害是矿山开采过程中最为显著的负面效应之一,准确预测质点峰值振动速度(PPV)对于有效预防爆破振动引发的建(构)筑物失稳破坏具有极大的工程实际意义。设计并开展了露天矿山开挖爆破现场监测试验,采用灰色关联分析法对PPV影响... 爆破地震危害是矿山开采过程中最为显著的负面效应之一,准确预测质点峰值振动速度(PPV)对于有效预防爆破振动引发的建(构)筑物失稳破坏具有极大的工程实际意义。设计并开展了露天矿山开挖爆破现场监测试验,采用灰色关联分析法对PPV影响因素进行敏感性分析,确定各影响因素之间的主次关系。在此基础上,建立最小二乘支持向量机(LS-SVM)模型对PPV进行预测,并通过粒子群算法(PSO)局部寻优确定LS-SVM模型中正则化参数和核函数宽度系数的最佳参数组合,最后将PSO-LSSVM模型预测结果与BP神经网络模型、LS-SVM模型及传统萨道夫斯基公式的预测结果进行了对比分析。结果表明:PSO-LSSVM模型对PPV预测的拟合相关系数(R^(2))、均方根误差(RMSE)、平均相对误差(MRE)及纳什系数(NSE)分别为97.38%、2.68%、1.36%和99.98%,PSO-LSSVM模型预测精度更高,且具有更好的泛化能力,用于多因素影响下的矿山爆破PPV预测切实可行。 展开更多
关键词 振动速度预测 敏感性分析 最小二乘支持向量机模型 粒子群算法 泛化能力
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部