Traceability is the fundamental premise of all metrological activities. The establishment of a traceability chain characterized by a shortened structure, while simultaneously enabling on-site traceability, represents ...Traceability is the fundamental premise of all metrological activities. The establishment of a traceability chain characterized by a shortened structure, while simultaneously enabling on-site traceability, represents a key trend in the advancement of metrology. This study explores the periodic accuracy and overall uniformity of self-traceable gratings, employing multilayer film gratings with a nominal period of 25.00 nm as the medium. We present a comparative analysis of measurement capabilities in a self-traceable grating calibration system characterized by a ‘top-down’ calibration approach and a Si lattice constant calibration system characterized by a ‘bottom-up’ calibration approach. The results indicate that the values obtained for the multilayer film grating periods, calibrated using the self-traceable grating system, are 24.40 nm with a standard deviation of 0.11 nm. By comparing with the values derived from the Si lattice constant, which yield 24.34 nm with a standard deviation of 0.14 nm, the validity and feasibility of the self-traceable calibration system are confirmed. This system extends and complements existing metrological frameworks, offering a precise pathway for traceability in precision engineering and nanotechnology research.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61925504 and 52475563)the National Key Research and Development Program of China (Grant Nos. 2022YFF0607600 and 2022YFF0605502)+1 种基金Key Laboratory of Metrology and Calibration Technology Fund Project (Grant No. JLKG2023001B001)Aeronautical Science Foundation Project (Grant No. 20230056038001)。
文摘Traceability is the fundamental premise of all metrological activities. The establishment of a traceability chain characterized by a shortened structure, while simultaneously enabling on-site traceability, represents a key trend in the advancement of metrology. This study explores the periodic accuracy and overall uniformity of self-traceable gratings, employing multilayer film gratings with a nominal period of 25.00 nm as the medium. We present a comparative analysis of measurement capabilities in a self-traceable grating calibration system characterized by a ‘top-down’ calibration approach and a Si lattice constant calibration system characterized by a ‘bottom-up’ calibration approach. The results indicate that the values obtained for the multilayer film grating periods, calibrated using the self-traceable grating system, are 24.40 nm with a standard deviation of 0.11 nm. By comparing with the values derived from the Si lattice constant, which yield 24.34 nm with a standard deviation of 0.14 nm, the validity and feasibility of the self-traceable calibration system are confirmed. This system extends and complements existing metrological frameworks, offering a precise pathway for traceability in precision engineering and nanotechnology research.