A carbon-nanotube-atom fixed and activated scheme of non-equilibrium molecular dynamics simulations is put forward to extract the thermal conductivity of carbon nanotubes (CNTs) embedded in solid argon. Though a 6.5...A carbon-nanotube-atom fixed and activated scheme of non-equilibrium molecular dynamics simulations is put forward to extract the thermal conductivity of carbon nanotubes (CNTs) embedded in solid argon. Though a 6.5% volume fraction of CNTs increases the composite thermal conductivity to about twice as much as that of the pure basal material, the thermal conductivity of CNTs embedded in solids is found to be decreased by 1/8-1/5 with reference to that of pure ones. The decrease of the intrinsic thermal conductivity of the solid-embedded CNTs and the thermal interface resistance are demonstrated to be responsible for the results.展开更多
The phonon relaxation and heat conduction in one-dimensional Fermi Pasta-Ulam (FPU) β lattices are studied by using molecular dynamics simulations. The phonon relaxation rate, which dominates the length dependence ...The phonon relaxation and heat conduction in one-dimensional Fermi Pasta-Ulam (FPU) β lattices are studied by using molecular dynamics simulations. The phonon relaxation rate, which dominates the length dependence of the FPU β lattice, is first calculated from the energy autoeorrelation function for different modes at various temperatures through equilibrium molecular dynamics simulations. We find that the relaxation rate as a function of wave number k is proportional to k^1.688, which leads to a N^0.41 divergence of the thermal conductivity in the framework of Green-Kubo relation. This is also in good agreement with the data obtained by non-equilibrium molecular dynamics simulations which estimate the length dependence exponent of the thermal conductivity as 0.415. Our results confirm the N^2/5 divergence in one-dimensional FPU β lattices. The effects of the heat flux on the thermal conductivity are also studied by imposing different temperature differences on the two ends of the lattices. We find that the thermal conductivity is insensitive to the heat flux under our simulation conditions. It implies that the linear response theory is applicable towards the heat conduction in one-dimensional FPU β lattices.展开更多
By extending the conventional scattering canceling theory,we propose a new design method for thermal cloaks based on isotropic materials.When the objects are covered by the designed cloaks,they will not disturb the te...By extending the conventional scattering canceling theory,we propose a new design method for thermal cloaks based on isotropic materials.When the objects are covered by the designed cloaks,they will not disturb the temperature profile in the background zone.In addition,if different inhomogeneity coefficients are selected in the thermal cloak design process,these cloaks can manipulate the temperature gradient of the objects,i.e.,make the temperature gradients higher,lower,or equal to the thermal gradient in the background zone.Therefore,thermal transparency,heat concentration or heat shield effects can be realized under a unified framework.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 50606018, and Tsinghua National Laboratory for Information Science and Technology of China.
文摘A carbon-nanotube-atom fixed and activated scheme of non-equilibrium molecular dynamics simulations is put forward to extract the thermal conductivity of carbon nanotubes (CNTs) embedded in solid argon. Though a 6.5% volume fraction of CNTs increases the composite thermal conductivity to about twice as much as that of the pure basal material, the thermal conductivity of CNTs embedded in solids is found to be decreased by 1/8-1/5 with reference to that of pure ones. The decrease of the intrinsic thermal conductivity of the solid-embedded CNTs and the thermal interface resistance are demonstrated to be responsible for the results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50976052,51136001,and 50730006)the Program for New Century Excellent Talents in University,China+1 种基金the Tsinghua University Initiative Scientific Research Program,Chinathe Tsinghua National Laboratory for Information Science and Technology TNList Cross-discipline Foundation,China
文摘The phonon relaxation and heat conduction in one-dimensional Fermi Pasta-Ulam (FPU) β lattices are studied by using molecular dynamics simulations. The phonon relaxation rate, which dominates the length dependence of the FPU β lattice, is first calculated from the energy autoeorrelation function for different modes at various temperatures through equilibrium molecular dynamics simulations. We find that the relaxation rate as a function of wave number k is proportional to k^1.688, which leads to a N^0.41 divergence of the thermal conductivity in the framework of Green-Kubo relation. This is also in good agreement with the data obtained by non-equilibrium molecular dynamics simulations which estimate the length dependence exponent of the thermal conductivity as 0.415. Our results confirm the N^2/5 divergence in one-dimensional FPU β lattices. The effects of the heat flux on the thermal conductivity are also studied by imposing different temperature differences on the two ends of the lattices. We find that the thermal conductivity is insensitive to the heat flux under our simulation conditions. It implies that the linear response theory is applicable towards the heat conduction in one-dimensional FPU β lattices.
基金Supported by the National Natural Science Foundation of China(Grant No.51406168).
文摘By extending the conventional scattering canceling theory,we propose a new design method for thermal cloaks based on isotropic materials.When the objects are covered by the designed cloaks,they will not disturb the temperature profile in the background zone.In addition,if different inhomogeneity coefficients are selected in the thermal cloak design process,these cloaks can manipulate the temperature gradient of the objects,i.e.,make the temperature gradients higher,lower,or equal to the thermal gradient in the background zone.Therefore,thermal transparency,heat concentration or heat shield effects can be realized under a unified framework.