Frequency conversion is pivotal in nonlinear optics and quantum optics for manipulating and translating light signals across different wavelength regimes.Achieving frequency conversion between two light beams with a s...Frequency conversion is pivotal in nonlinear optics and quantum optics for manipulating and translating light signals across different wavelength regimes.Achieving frequency conversion between two light beams with a small frequency interval is a central challenge.In this work,we design a pair of coupled silicon microrings wherein coupled-induced modesplitting exists to achieve a small frequency shift by the process of four-wave mixing Bragg scattering.As an example,the signal can be up or down converted to the idler which is 15.5 GHz spaced when two pumps align with another pair of split resonances.The results unveil the potential of coupled microring resonators for small interval frequency conversion in a high-fidelity,all-optical,and signal processing quantum frequency interface.展开更多
A maximal photon number entangled state,namely NOON state,can be adopted for sensing with a quantum enhancedprecision.In this work,we designed silicon quantum photonic chips containing two types of Mach-Zehnder interf...A maximal photon number entangled state,namely NOON state,can be adopted for sensing with a quantum enhancedprecision.In this work,we designed silicon quantum photonic chips containing two types of Mach-Zehnder interferometerswherein the two-photon NOON state,sensing element for temperature or humidity,is generated.Compared with classicallight or single photon case,two-photon NOON state sensing shows a solid enhancement in the sensing resolution andprecision.As the first demonstration of on-chip quantum photonic sensing,it reveals the advantages of photonic chips forhigh integration density,small-size,stability for multiple-parameter sensing serviceability.A higher sensing precision isexpected to beat the standard quantum limit with a higher photon number NOON state.展开更多
High-dimensional entanglement provides valuable resources for quantum technologies,including quantum communication,quantum optical coherence tomography,and quantum computing.Obtaining a high brightness and dimensional...High-dimensional entanglement provides valuable resources for quantum technologies,including quantum communication,quantum optical coherence tomography,and quantum computing.Obtaining a high brightness and dimensional entanglement source has significant value.Here we utilize a tunable asymmetric Mach–Zehnder interferometer coupled silicon microring resonator with 100 GHz free spectral range to achieve this goal.With the strategy of the tunable coupler,the dynamical and extensive tuning range of quality factors of the microring can be obtained,and then the biphoton pair generation rate can be optimized.By selecting and characterizing 28 pairs from a more than 30-pair modes biphoton frequency comb,we obtain a Schmidt number of at least 23.4 and on-chip pair generation rate of 19.9 MHz/m W;under a low on-chip pump power,which corresponds to 547 dimensions Hilbert space in frequency freedom.These results will prompt the wide applications of quantum frequency comb and boost the further large density and scalable on-chip quantum information processing.展开更多
Maximal multi-photon entangled states,known as NOON states,play an essential role in quantum metrology.With the number of photons growing,NOON states are becoming increasingly powerful and advantageous for obtaining s...Maximal multi-photon entangled states,known as NOON states,play an essential role in quantum metrology.With the number of photons growing,NOON states are becoming increasingly powerful and advantageous for obtaining supersensitive and super-resolved measurements.In this paper,we propose a universal scheme for generating three-and four-photon path-entangled NOON states on a reconfigurable photonic chip via photons subtracted from pairs and detected by heralding counters.Our method is postselection free,enabling phase supersensitive measurements and sensing at the Heisenberg limit.Our NOON-state generator allows for integration of quantum light sources as well as practical and portable precision phase-related measurements.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFF0712800)。
文摘Frequency conversion is pivotal in nonlinear optics and quantum optics for manipulating and translating light signals across different wavelength regimes.Achieving frequency conversion between two light beams with a small frequency interval is a central challenge.In this work,we design a pair of coupled silicon microrings wherein coupled-induced modesplitting exists to achieve a small frequency shift by the process of four-wave mixing Bragg scattering.As an example,the signal can be up or down converted to the idler which is 15.5 GHz spaced when two pumps align with another pair of split resonances.The results unveil the potential of coupled microring resonators for small interval frequency conversion in a high-fidelity,all-optical,and signal processing quantum frequency interface.
基金supported by the National Key R&D Program of China(Grant No.2022YFF0712800)Innova-tion Program for Quantum Science and Technology(Grant No.2021ZD0301500).
文摘A maximal photon number entangled state,namely NOON state,can be adopted for sensing with a quantum enhancedprecision.In this work,we designed silicon quantum photonic chips containing two types of Mach-Zehnder interferometerswherein the two-photon NOON state,sensing element for temperature or humidity,is generated.Compared with classicallight or single photon case,two-photon NOON state sensing shows a solid enhancement in the sensing resolution andprecision.As the first demonstration of on-chip quantum photonic sensing,it reveals the advantages of photonic chips forhigh integration density,small-size,stability for multiple-parameter sensing serviceability.A higher sensing precision isexpected to beat the standard quantum limit with a higher photon number NOON state.
基金supported by the National Basic Research Program of China(Grant Nos.2019YFA0308700 and 2017YFA0303700)the National Natural Science Foundation of China(Grant Nos.61632021 and 11690031)the Open Funds from the State Key Laboratory of High Performance Computing of China(HPCL,National University of Defense Technology)。
文摘High-dimensional entanglement provides valuable resources for quantum technologies,including quantum communication,quantum optical coherence tomography,and quantum computing.Obtaining a high brightness and dimensional entanglement source has significant value.Here we utilize a tunable asymmetric Mach–Zehnder interferometer coupled silicon microring resonator with 100 GHz free spectral range to achieve this goal.With the strategy of the tunable coupler,the dynamical and extensive tuning range of quality factors of the microring can be obtained,and then the biphoton pair generation rate can be optimized.By selecting and characterizing 28 pairs from a more than 30-pair modes biphoton frequency comb,we obtain a Schmidt number of at least 23.4 and on-chip pair generation rate of 19.9 MHz/m W;under a low on-chip pump power,which corresponds to 547 dimensions Hilbert space in frequency freedom.These results will prompt the wide applications of quantum frequency comb and boost the further large density and scalable on-chip quantum information processing.
基金supported by the National Basic Research Program of China(Grant No.2017YFA0303700)the Open Funds from the State Key Laboratory of High Performance Computing of China(HPCL,National University of Defense Technology)。
文摘Maximal multi-photon entangled states,known as NOON states,play an essential role in quantum metrology.With the number of photons growing,NOON states are becoming increasingly powerful and advantageous for obtaining supersensitive and super-resolved measurements.In this paper,we propose a universal scheme for generating three-and four-photon path-entangled NOON states on a reconfigurable photonic chip via photons subtracted from pairs and detected by heralding counters.Our method is postselection free,enabling phase supersensitive measurements and sensing at the Heisenberg limit.Our NOON-state generator allows for integration of quantum light sources as well as practical and portable precision phase-related measurements.