We investigate the constraints on a generalized Chaplygin gas (GCG) model using the gold sample type-Ia supernovae (She Ia) data, the new Supernova Legacy Survey (SNLS) Sne Ia data and the size of baryonic acous...We investigate the constraints on a generalized Chaplygin gas (GCG) model using the gold sample type-Ia supernovae (She Ia) data, the new Supernova Legacy Survey (SNLS) Sne Ia data and the size of baryonic acoustic oscillation peak found in Sloan Digital Sky Survey (SDSS). In a spatially flat universe case we obtain, at a 95.4% confidence level, A8 = 0.76^+0.07 -0.07 and α= 0.028^+0.322 -0.2382 Our results are consistent with the ACDM model (α= 0), but rule out the standard Chaplygin gas model (α= 1).展开更多
We calculate the contributions of the vacuum fluctuations and radiation reaction to the rate of change of the mean atomic energy for a multi-level hydrogen atom in the multipolar coupling scheme in a spacetime with a ...We calculate the contributions of the vacuum fluctuations and radiation reaction to the rate of change of the mean atomic energy for a multi-level hydrogen atom in the multipolar coupling scheme in a spacetime with a reflecting boundary. Our results show that, due to the presence of the boundary, the polarizations of the atom in the parallel direction and in the normal direction are weighted differently in terms of their contributions to the spontaneous emission rate, which is an oscillating function of the atom distance from the boundary. The possible experimental implications of our result are briefly discussed.展开更多
We consider, from the point of view of a coaccelerated frame, a uniformly accelerated multi-level atom in interaction with vacuum quantum electromagnetic fields in the multi-polar coupling scheme, and calculate the ra...We consider, from the point of view of a coaccelerated frame, a uniformly accelerated multi-level atom in interaction with vacuum quantum electromagnetic fields in the multi-polar coupling scheme, and calculate the rate of change of the atom's energy assuming a thermal bath at a finite temperature T in the Rindler wedge. Comparison with the spontaneous excitation rate of the atom calculated in the instantaneous inertial frame of the atom shows that both the inertial and coaccelerated observer would agree with each other only when the temperature of the thermal bath equals the FDU value TFDU = α/2π.展开更多
Assuming that the effects of trans-Planckian physics are encoded in the choice of initial conditions, mode by mode, for vacuum states at the time when its wavelength becomes equal to the scale of new physics (Planck...Assuming that the effects of trans-Planckian physics are encoded in the choice of initial conditions, mode by mode, for vacuum states at the time when its wavelength becomes equal to the scale of new physics (Planck's scale for example), we calculate the spectrum of energy densities of total relic gravitational waves from de Sitter inflation to the matter dominated universe. Our results show that the spectrum acquires corrections due to the consideration of trans-Planckian physics and these corrections depend sensitively on the vacuum state that was actually realized at the beginning of the inflation.展开更多
We obtain a lower bound on the spacetime-weighted average of the energy density for the scalar field in four-dimensional flat spacetime. The bound takes the form of a quantum inequality. The inequality does not rely o...We obtain a lower bound on the spacetime-weighted average of the energy density for the scalar field in four-dimensional flat spacetime. The bound takes the form of a quantum inequality. The inequality does not rely on the quantum state and its form is only related to the weights, namely the spacetime sampling functions which are assumed to be smooth, positive and compactly supported. It is found that the inequality is just equal to the temporal quantum energy inequality. When the characteristic length of the temporal sampling function tends to zero, the lower bound becomes divergent. This is consistent with the fact that the spatial restriction on negative energy density does not exist in four-dimensional spacetime.展开更多
We study a two-level atom in interaction with a real massless scalar quantum field in a spacetime with a reflecting boundary. We calculate the rate of change of the atomic energy for the atom. The presence of the boun...We study a two-level atom in interaction with a real massless scalar quantum field in a spacetime with a reflecting boundary. We calculate the rate of change of the atomic energy for the atom. The presence of the boundary modifies the quantum fluctuations of the scalar field, which in turn modifies the rate of change of the atomic energy. It is found that the modifications induced by the presence of a boundary make the spontaneous radiation rate of an excited atom to oscillate near the boundary and this oscillatory behaviour may offer a possible opportunity for experimental tests for geometrical (boundary) effects in flat spacetime.展开更多
基金Supported in part by the National Natural Science Foundation of China under Grants Nos 10375023 and 10575035, the Programme for NCET under Grant No 04-0784, the Key Project of the Ministry of Education of China (No 205110), and the Doctor Foundation of CSUFT.
文摘We investigate the constraints on a generalized Chaplygin gas (GCG) model using the gold sample type-Ia supernovae (She Ia) data, the new Supernova Legacy Survey (SNLS) Sne Ia data and the size of baryonic acoustic oscillation peak found in Sloan Digital Sky Survey (SDSS). In a spatially flat universe case we obtain, at a 95.4% confidence level, A8 = 0.76^+0.07 -0.07 and α= 0.028^+0.322 -0.2382 Our results are consistent with the ACDM model (α= 0), but rule out the standard Chaplygin gas model (α= 1).
基金Supported by the National Natural Science Foundation of China under Grant Nos 10375023 and 10575035, the Programme for NCET (No 04-0784), and the Key Project of the Ministry of Education of China (No 205110).
文摘We calculate the contributions of the vacuum fluctuations and radiation reaction to the rate of change of the mean atomic energy for a multi-level hydrogen atom in the multipolar coupling scheme in a spacetime with a reflecting boundary. Our results show that, due to the presence of the boundary, the polarizations of the atom in the parallel direction and in the normal direction are weighted differently in terms of their contributions to the spontaneous emission rate, which is an oscillating function of the atom distance from the boundary. The possible experimental implications of our result are briefly discussed.
基金Supported in part by the National Natural Science Foundation of China under Grants Nos 10575035 and 10775050, the Programme for NCET under Grant No 04-0784, the SRFDP under Grant No 20070542002, and the Programme for the Key Discipline in Hunan Province.
文摘We consider, from the point of view of a coaccelerated frame, a uniformly accelerated multi-level atom in interaction with vacuum quantum electromagnetic fields in the multi-polar coupling scheme, and calculate the rate of change of the atom's energy assuming a thermal bath at a finite temperature T in the Rindler wedge. Comparison with the spontaneous excitation rate of the atom calculated in the instantaneous inertial frame of the atom shows that both the inertial and coaccelerated observer would agree with each other only when the temperature of the thermal bath equals the FDU value TFDU = α/2π.
基金Supported by the National Natural Science Foundation of China under Grant No 10375023, the Program for NCET (No 04-0784), and the Key Project of the Ministry of Education of China (No 205110).
文摘Assuming that the effects of trans-Planckian physics are encoded in the choice of initial conditions, mode by mode, for vacuum states at the time when its wavelength becomes equal to the scale of new physics (Planck's scale for example), we calculate the spectrum of energy densities of total relic gravitational waves from de Sitter inflation to the matter dominated universe. Our results show that the spectrum acquires corrections due to the consideration of trans-Planckian physics and these corrections depend sensitively on the vacuum state that was actually realized at the beginning of the inflation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10375023, 10575035 and 10125521, the Program for NCET (No 04-0784), the Key Project of Chinese Ministry of Education (No 205110), and the National Major State Basic Research and Development Programme of China (G2000077400).
文摘We obtain a lower bound on the spacetime-weighted average of the energy density for the scalar field in four-dimensional flat spacetime. The bound takes the form of a quantum inequality. The inequality does not rely on the quantum state and its form is only related to the weights, namely the spacetime sampling functions which are assumed to be smooth, positive and compactly supported. It is found that the inequality is just equal to the temporal quantum energy inequality. When the characteristic length of the temporal sampling function tends to zero, the lower bound becomes divergent. This is consistent with the fact that the spatial restriction on negative energy density does not exist in four-dimensional spacetime.
基金Supported by the National Natural Science Foundation of China under Grant No 10375023, the Program for NCET (No 04-0784), and the Key Project of the Ministry of Education of China (No 205110).
文摘We study a two-level atom in interaction with a real massless scalar quantum field in a spacetime with a reflecting boundary. We calculate the rate of change of the atomic energy for the atom. The presence of the boundary modifies the quantum fluctuations of the scalar field, which in turn modifies the rate of change of the atomic energy. It is found that the modifications induced by the presence of a boundary make the spontaneous radiation rate of an excited atom to oscillate near the boundary and this oscillatory behaviour may offer a possible opportunity for experimental tests for geometrical (boundary) effects in flat spacetime.