针对传统SLAM算法在动态环境中会受到动态特征点的影响,导致算法定位精度下降的问题,提出了一种融合语义信息的视觉惯性SLAM算法SF-VINS(visual inertial navigation system based on semantics fusion)。首先基于VINS-Mono算法框架,将...针对传统SLAM算法在动态环境中会受到动态特征点的影响,导致算法定位精度下降的问题,提出了一种融合语义信息的视觉惯性SLAM算法SF-VINS(visual inertial navigation system based on semantics fusion)。首先基于VINS-Mono算法框架,将语义分割网络PP-LiteSeg集成到系统前端,并根据语义分割结果去除动态特征点;其次,在后端利用像素语义概率构建语义概率误差约束项,并使用特征点自适应权重,提出了新的BA代价函数和相机外参优化策略,提高了状态估计的准确度;最后,为验证该算法的有效性,在VIODE和NTU VIRAL数据集上进行实验。实验结果表明,与目前先进的视觉惯性SLAM算法相比,该算法在动态场景和静态场景的定位精度和鲁棒性均有一定优势。展开更多
文摘针对传统SLAM算法在动态环境中会受到动态特征点的影响,导致算法定位精度下降的问题,提出了一种融合语义信息的视觉惯性SLAM算法SF-VINS(visual inertial navigation system based on semantics fusion)。首先基于VINS-Mono算法框架,将语义分割网络PP-LiteSeg集成到系统前端,并根据语义分割结果去除动态特征点;其次,在后端利用像素语义概率构建语义概率误差约束项,并使用特征点自适应权重,提出了新的BA代价函数和相机外参优化策略,提高了状态估计的准确度;最后,为验证该算法的有效性,在VIODE和NTU VIRAL数据集上进行实验。实验结果表明,与目前先进的视觉惯性SLAM算法相比,该算法在动态场景和静态场景的定位精度和鲁棒性均有一定优势。