期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于DAE的单细胞RNA测序数据聚类研究
被引量:
1
1
作者
何慧茹
李晓峰
+1 位作者
张鑫
柳楠
《现代电子技术》
北大核心
2020年第24期144-148,共5页
传统数据降维方法处理单细胞RNA测序数据存在特征提取能力较差、聚类精度较低等问题,有必要引入深度学习方法以提高对复杂数据特征的提取能力。在对数据不进行任何人工筛选的条件下,利用DAE提取表达能力更强的数据特征,分别以K⁃means和D...
传统数据降维方法处理单细胞RNA测序数据存在特征提取能力较差、聚类精度较低等问题,有必要引入深度学习方法以提高对复杂数据特征的提取能力。在对数据不进行任何人工筛选的条件下,利用DAE提取表达能力更强的数据特征,分别以K⁃means和DBSCAN聚类作为DAE的顶层设置形成DAE+K⁃means和DAE+DBSCAN组合模型,将这两种深度学习组合模型在Deng数据集上与传统聚类模型SC3进行对比。与SC3的0.73聚类精度相比,DAE+K⁃means和DAE+DBSCAN的聚类精度分别达到0.93和0.97,分别提高了0.2和0.24。实验结果表明,DAE在单细胞聚类领域具有广阔的应用前景。
展开更多
关键词
单细胞聚类
深度自动编码器
深度学习
K⁃means聚类
DBSCAN聚类
结果分析
在线阅读
下载PDF
职称材料
题名
基于DAE的单细胞RNA测序数据聚类研究
被引量:
1
1
作者
何慧茹
李晓峰
张鑫
柳楠
机构
山东建筑大学计算机科学与技术学院
出处
《现代电子技术》
北大核心
2020年第24期144-148,共5页
基金
国家自然科学基金(61902221)
山东省自然科学基金(ZR2018MF012)。
文摘
传统数据降维方法处理单细胞RNA测序数据存在特征提取能力较差、聚类精度较低等问题,有必要引入深度学习方法以提高对复杂数据特征的提取能力。在对数据不进行任何人工筛选的条件下,利用DAE提取表达能力更强的数据特征,分别以K⁃means和DBSCAN聚类作为DAE的顶层设置形成DAE+K⁃means和DAE+DBSCAN组合模型,将这两种深度学习组合模型在Deng数据集上与传统聚类模型SC3进行对比。与SC3的0.73聚类精度相比,DAE+K⁃means和DAE+DBSCAN的聚类精度分别达到0.93和0.97,分别提高了0.2和0.24。实验结果表明,DAE在单细胞聚类领域具有广阔的应用前景。
关键词
单细胞聚类
深度自动编码器
深度学习
K⁃means聚类
DBSCAN聚类
结果分析
Keywords
single cell clustering
DAE
deep learning
K⁃Means clustering
DBSCAN clustering
results analysis
分类号
TN919-34 [电子电信—通信与信息系统]
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于DAE的单细胞RNA测序数据聚类研究
何慧茹
李晓峰
张鑫
柳楠
《现代电子技术》
北大核心
2020
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部