As superconducting quantum computing continues to advance at an unprecedented pace,there is a compelling demand for the innovation of specialized electronic instruments that act as crucial conduits between quantum pro...As superconducting quantum computing continues to advance at an unprecedented pace,there is a compelling demand for the innovation of specialized electronic instruments that act as crucial conduits between quantum processors and host computers.Here,we introduce a microwave measurement and control system(M^(2)CS)dedicated to large-scale superconducting quantum processors.M^(2)CS features a compact modular design that balances overall performance,scalability and flexibility.Electronic tests of M^(2)CS show key metrics comparable to commercial instruments.Benchmark tests on transmon superconducting qubits further show qubit coherence and gate fidelities comparable to state-of-the-art results,confirming M^(2)CS's capability to meet the stringent requirements of quantum experiments running on intermediate-scale quantum processors.The compact and scalable nature of our design holds the potential to support over 1000 qubits after upgrade in stability and integration.The M^(2)CS architecture may also be adopted to a wider range of scenarios,including other quantum computing platforms such as trapped ions and silicon quantum dots,as well as more traditional applications like microwave kinetic inductance detectors and phased array radar systems.展开更多
基金supported by the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant Nos.KQTD20210811090049034,RCBS20231211090824040,and RCBS20231211090815032)the National Natural Science Foundation of China(Grant Nos.12174178,12204228,12374474,and 123b2071)+2 种基金the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301703)the Shenzhen-Hong Kong Cooperation Zone for Technology and Innovation(Grant No.HZQB-KCZYB-2020050)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2024A1515011714 and 2022A1515110615)。
文摘As superconducting quantum computing continues to advance at an unprecedented pace,there is a compelling demand for the innovation of specialized electronic instruments that act as crucial conduits between quantum processors and host computers.Here,we introduce a microwave measurement and control system(M^(2)CS)dedicated to large-scale superconducting quantum processors.M^(2)CS features a compact modular design that balances overall performance,scalability and flexibility.Electronic tests of M^(2)CS show key metrics comparable to commercial instruments.Benchmark tests on transmon superconducting qubits further show qubit coherence and gate fidelities comparable to state-of-the-art results,confirming M^(2)CS's capability to meet the stringent requirements of quantum experiments running on intermediate-scale quantum processors.The compact and scalable nature of our design holds the potential to support over 1000 qubits after upgrade in stability and integration.The M^(2)CS architecture may also be adopted to a wider range of scenarios,including other quantum computing platforms such as trapped ions and silicon quantum dots,as well as more traditional applications like microwave kinetic inductance detectors and phased array radar systems.