期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于RF回归和LSTM神经网络的空气污染耦合性研究及预测——以北京市为例
1
作者
任文宗
刘婕
+3 位作者
邓玉婷
邹媛茜
刘娟
王胜
《科学技术创新》
2025年第10期22-26,共5页
大气污染问题与我们的生活息息相关,一直以来,都是国内外关注的热点之一。以北京市为例,研究污染物与气象要素之间的关系,尝试解释污染物随时间变化的影响因素和预测污染物在未来10个月内的含量变化,为空气质量分析和污染防治提供思路...
大气污染问题与我们的生活息息相关,一直以来,都是国内外关注的热点之一。以北京市为例,研究污染物与气象要素之间的关系,尝试解释污染物随时间变化的影响因素和预测污染物在未来10个月内的含量变化,为空气质量分析和污染防治提供思路。基于《统计年鉴》,中国空气质量在线监测分析平台等官方数据,通过Pearson相关性分析,随机森林(RF)回归模型,基于长短时记忆(LSTM)神经网络的预测模型等方法对3种气象因子与6种空气污染物进行特征分析,并对未来10个月的空气污染物含量变化进行预测。在现有数据的基础上,构建回归模型得出结论:大气污染物中PM_(2.5),O_(3)对空气质量指数(AQI)的影响较强,而气象要素中降水和相对湿度对AQI的影响较弱,气温对AQI的影响较强,同时,构建预测模型得到各污染物变化趋势为先升后降。
展开更多
关键词
气象因子与空气污染物的特征分析
Pearson相关性分析
随机森林回归
LSTM神经网络
在线阅读
下载PDF
职称材料
题名
基于RF回归和LSTM神经网络的空气污染耦合性研究及预测——以北京市为例
1
作者
任文宗
刘婕
邓玉婷
邹媛茜
刘娟
王胜
机构
湖南工学院理学院
出处
《科学技术创新》
2025年第10期22-26,共5页
基金
2024年度湖南省大学生创新训练计划一般项目-湘教通〔2024〕191号-5360。
文摘
大气污染问题与我们的生活息息相关,一直以来,都是国内外关注的热点之一。以北京市为例,研究污染物与气象要素之间的关系,尝试解释污染物随时间变化的影响因素和预测污染物在未来10个月内的含量变化,为空气质量分析和污染防治提供思路。基于《统计年鉴》,中国空气质量在线监测分析平台等官方数据,通过Pearson相关性分析,随机森林(RF)回归模型,基于长短时记忆(LSTM)神经网络的预测模型等方法对3种气象因子与6种空气污染物进行特征分析,并对未来10个月的空气污染物含量变化进行预测。在现有数据的基础上,构建回归模型得出结论:大气污染物中PM_(2.5),O_(3)对空气质量指数(AQI)的影响较强,而气象要素中降水和相对湿度对AQI的影响较弱,气温对AQI的影响较强,同时,构建预测模型得到各污染物变化趋势为先升后降。
关键词
气象因子与空气污染物的特征分析
Pearson相关性分析
随机森林回归
LSTM神经网络
Keywords
characteristic analysis of meteorological factors and air pollutants
Pearson correlation analysis
random forest regression
LSTM neural network
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
X51 [环境科学与工程—环境工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于RF回归和LSTM神经网络的空气污染耦合性研究及预测——以北京市为例
任文宗
刘婕
邓玉婷
邹媛茜
刘娟
王胜
《科学技术创新》
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部