Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of...Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured. The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings.展开更多
In this paper, conductive antimony-doped tin oxide (ATO) composite particles is prepared by hydroxylation method of metal alcoxides. This method has many advantages such as little pollution, low-cost, simple sheet and...In this paper, conductive antimony-doped tin oxide (ATO) composite particles is prepared by hydroxylation method of metal alcoxides. This method has many advantages such as little pollution, low-cost, simple sheet and equipment. The synthesis processing and the ATO nanoparticles are characterized by means of transmission electron microscope (TEM), X-ray diffraction (XRD), thermal gravimetric and differential thermal analysis, and BET. The results show that the ATO nanoparticles is tetragonal rutile crystal structure. TEM show that the particles are monodispersed with weak aggromation. The size of the particles calcinated at 700 is about 8nm. The specific areas are 153 m^2·g~ -1 . In addition to, ATO nanoparticles have good electric展开更多
Thermal barrier coatings (TBCs) offer the potential to significantly improve efficiencies of aero engines as well as stationary gas turbines for power generation. On internally cooled turbine parts, temperature gradie...Thermal barrier coatings (TBCs) offer the potential to significantly improve efficiencies of aero engines as well as stationary gas turbines for power generation. On internally cooled turbine parts, temperature gradients of the order of 100-150℃ can be achieved. TBCs, typically consisting of an yttrium stabilized zirconia top coat and a metallic bond coat deposited onto a superalloy substrate, are mainly used to extend lifetime. Further efficiency improvements require TBCs being an integral part of the component which requires reliable and predictable TBC performance. TBCs produced by electron beam physical vapor deposition (EB-PVD) or plasma spray (PS) deposition are favored for high performance applications. The paper highlights critical R&D needs for advanced TBC systems with a special focus on reduced thermal conductivity and life prediction needs. To further enhance the efficiency of gas turbines, higher temperature and a longer lifetime of the coating are needed for the next generation of TBCs. This paper presents the development of new materials, new deposition technologies, and new concept for application as novel TBCs. This paper summarizes the basic properties of conventional thermal barrier coatings. Based on our own investigation, we reviewed the progress on materials and technologies of novel thermal barrier coatings. Except yttria stabilized zirconia, other materials such as lanthanum zirconate and rare earth oxides are also promising materials for thermal barrier coatings. Nanostructure thermal barrier coating is presented as a new concept. This paper also summarizes the technologies for depositing the thermal barrier coatings.展开更多
Nanocrystalline powders of yttrium partially stabilized zirconia (YPSZ) are reprocessed into agglomerated feedstocks for plasma spraying thermal barrier coatings (TBCs), using the methods of ball milling, slurry dispe...Nanocrystalline powders of yttrium partially stabilized zirconia (YPSZ) are reprocessed into agglomerated feedstocks for plasma spraying thermal barrier coatings (TBCs), using the methods of ball milling, slurry dispersion, spray drying, and heat treatment. Atmospheric plasma is used to spray the agglomerated nanocrystalline particle feedstocks and coatings were deposited on the substrate of Ni-based superalloy. Scanning electron microscopy (SEM) is used to examine the morphology and cross-section of the agglomerated feedstocks and the free-section and cross-section of the nanostructured TBCs. Experimental results show that the agglomerated nanocrystalline particles are spherical and dense. Unlike conventional plasma-sprayed coatings, the micron/nano/micron sandwich structure can be found in the nanostructured YPSZ coatings deposited by atmospheric plasma spraying.展开更多
文摘Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured. The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings.
基金Innovation project of the key laboratory of ministry of educational (I MT04033012)
文摘In this paper, conductive antimony-doped tin oxide (ATO) composite particles is prepared by hydroxylation method of metal alcoxides. This method has many advantages such as little pollution, low-cost, simple sheet and equipment. The synthesis processing and the ATO nanoparticles are characterized by means of transmission electron microscope (TEM), X-ray diffraction (XRD), thermal gravimetric and differential thermal analysis, and BET. The results show that the ATO nanoparticles is tetragonal rutile crystal structure. TEM show that the particles are monodispersed with weak aggromation. The size of the particles calcinated at 700 is about 8nm. The specific areas are 153 m^2·g~ -1 . In addition to, ATO nanoparticles have good electric
基金Fundamental project of the Beijing general researchinstitute of mining and metallurgy (YG-2004 -27)
文摘Thermal barrier coatings (TBCs) offer the potential to significantly improve efficiencies of aero engines as well as stationary gas turbines for power generation. On internally cooled turbine parts, temperature gradients of the order of 100-150℃ can be achieved. TBCs, typically consisting of an yttrium stabilized zirconia top coat and a metallic bond coat deposited onto a superalloy substrate, are mainly used to extend lifetime. Further efficiency improvements require TBCs being an integral part of the component which requires reliable and predictable TBC performance. TBCs produced by electron beam physical vapor deposition (EB-PVD) or plasma spray (PS) deposition are favored for high performance applications. The paper highlights critical R&D needs for advanced TBC systems with a special focus on reduced thermal conductivity and life prediction needs. To further enhance the efficiency of gas turbines, higher temperature and a longer lifetime of the coating are needed for the next generation of TBCs. This paper presents the development of new materials, new deposition technologies, and new concept for application as novel TBCs. This paper summarizes the basic properties of conventional thermal barrier coatings. Based on our own investigation, we reviewed the progress on materials and technologies of novel thermal barrier coatings. Except yttria stabilized zirconia, other materials such as lanthanum zirconate and rare earth oxides are also promising materials for thermal barrier coatings. Nanostructure thermal barrier coating is presented as a new concept. This paper also summarizes the technologies for depositing the thermal barrier coatings.
文摘Nanocrystalline powders of yttrium partially stabilized zirconia (YPSZ) are reprocessed into agglomerated feedstocks for plasma spraying thermal barrier coatings (TBCs), using the methods of ball milling, slurry dispersion, spray drying, and heat treatment. Atmospheric plasma is used to spray the agglomerated nanocrystalline particle feedstocks and coatings were deposited on the substrate of Ni-based superalloy. Scanning electron microscopy (SEM) is used to examine the morphology and cross-section of the agglomerated feedstocks and the free-section and cross-section of the nanostructured TBCs. Experimental results show that the agglomerated nanocrystalline particles are spherical and dense. Unlike conventional plasma-sprayed coatings, the micron/nano/micron sandwich structure can be found in the nanostructured YPSZ coatings deposited by atmospheric plasma spraying.