探讨了稀碱法分离工艺对糯米中蛋白质提取率的影响,以得到纯度较高的糯米蛋白和糯米淀粉。研究碱液浓度、温度、水料比和时间对提取率的影响,采用响应面法对工艺参数进行优化,通过软件对提取率的二次多项数学模型解逆矩阵分析,最佳提取...探讨了稀碱法分离工艺对糯米中蛋白质提取率的影响,以得到纯度较高的糯米蛋白和糯米淀粉。研究碱液浓度、温度、水料比和时间对提取率的影响,采用响应面法对工艺参数进行优化,通过软件对提取率的二次多项数学模型解逆矩阵分析,最佳提取工艺为:碱液浓度0.05 mol/L、温度45.68℃、水料比8、时间94.96 m in。在上述工艺条件下蛋白提取率为80.11%,蛋白纯度为77.53%(干基),淀粉提取率为89.61%,淀粉纯度为90.50%(干基)。展开更多
通过Suzuki反应合成了三种基于三苯胺/二苯砜的热激活延迟荧光(TADF)材料(1–3),采用紫外-可见(UV-Vis)吸收光谱、时间分辨荧光发射光谱、循环伏安(CV)测试、理论计算、热重分析和差示扫描量热法,系统地研究了三种材料的光物理、电化学...通过Suzuki反应合成了三种基于三苯胺/二苯砜的热激活延迟荧光(TADF)材料(1–3),采用紫外-可见(UV-Vis)吸收光谱、时间分辨荧光发射光谱、循环伏安(CV)测试、理论计算、热重分析和差示扫描量热法,系统地研究了三种材料的光物理、电化学、延迟荧光性能和热稳定性.材料1–3均为基于分子内电荷转移(ICT)的双极性分子.三种材料在薄膜中的单线态-三线态能级差分别为0.46、0.39和0.29 e V.荧光量子效率和荧光寿命的测试结果表明,三种材料均能发射延迟荧光,其中材料3具有最佳的延迟荧光性能.材料1–3的最高占有分子轨道(HOMO)能级分别为–4.91、–4.89和–4.89 e V.结合UV-Vis吸收光谱中得到的能隙(Eg)值,我们得到材料1–3的最低未占分子轨道(LUMO)能级,分别为–1.74、–1.89和–1.94 e V.热分析的结果表明,材料1–3具有其较高的热分解温度(Td,失重5%时的温度),分别为436、387和310°C.展开更多
文摘探讨了稀碱法分离工艺对糯米中蛋白质提取率的影响,以得到纯度较高的糯米蛋白和糯米淀粉。研究碱液浓度、温度、水料比和时间对提取率的影响,采用响应面法对工艺参数进行优化,通过软件对提取率的二次多项数学模型解逆矩阵分析,最佳提取工艺为:碱液浓度0.05 mol/L、温度45.68℃、水料比8、时间94.96 m in。在上述工艺条件下蛋白提取率为80.11%,蛋白纯度为77.53%(干基),淀粉提取率为89.61%,淀粉纯度为90.50%(干基)。
文摘通过Suzuki反应合成了三种基于三苯胺/二苯砜的热激活延迟荧光(TADF)材料(1–3),采用紫外-可见(UV-Vis)吸收光谱、时间分辨荧光发射光谱、循环伏安(CV)测试、理论计算、热重分析和差示扫描量热法,系统地研究了三种材料的光物理、电化学、延迟荧光性能和热稳定性.材料1–3均为基于分子内电荷转移(ICT)的双极性分子.三种材料在薄膜中的单线态-三线态能级差分别为0.46、0.39和0.29 e V.荧光量子效率和荧光寿命的测试结果表明,三种材料均能发射延迟荧光,其中材料3具有最佳的延迟荧光性能.材料1–3的最高占有分子轨道(HOMO)能级分别为–4.91、–4.89和–4.89 e V.结合UV-Vis吸收光谱中得到的能隙(Eg)值,我们得到材料1–3的最低未占分子轨道(LUMO)能级,分别为–1.74、–1.89和–1.94 e V.热分析的结果表明,材料1–3具有其较高的热分解温度(Td,失重5%时的温度),分别为436、387和310°C.