期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Brownian ratchet mechanism of translocation in T7 RNA polymerase facilitated by a post-translocation energy bias arising from the conformational change of the enzyme
1
作者 王展峰 张志强 +2 位作者 付一本 王鹏业 谢平 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期195-206,共12页
T7 RNA polymerase can transcribe DNA to RNA by translocating along the DNA. Structural studies suggest that the pivoting rotation of the O helix in the fingers domain may drive the movement of the O helix C-terminal T... T7 RNA polymerase can transcribe DNA to RNA by translocating along the DNA. Structural studies suggest that the pivoting rotation of the O helix in the fingers domain may drive the movement of the O helix C-terminal Tyr639 from pre- to post-translocation positions. In a series of all-atom molecular dynamics simulations, we show that the movement of Tyr639 is not tightly coupled to the rotation of the O helix, and that the two processes are only weakly dependent on each other. We also show that the internal potential of the enzyme itself generates a small difference in free energy (△E) between the post- and pre-translocation positions of Tyr639. The calculated value of △E is consistent with that obtained from single-molecule experimental data. These findings lend support to a model in which the translocation takes place via a Brownian ratchet mechanism, with the small free energy bias △E arising from the conformational change of the enzyme itself. 展开更多
关键词 RNA polymerase molecular dynamics simulation molecular motor Brownian ratchet
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部