期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
面向陆战场目标识别的轻量级卷积神经网络 被引量:6
1
作者 乔梦雨 王鹏 +1 位作者 吴娇 张宽 《计算机科学》 CSCD 北大核心 2020年第5期161-165,共5页
在实际陆战场环境中,作战人员无法随身携带GPU等大型计算设备,因此较难计算规模较大的神经网络参数,进而导致目标识别网络无法实时工作。现有的轻量级神经网络虽然解决了实时性的问题,但是不能满足准确率的要求。为此,文中提出了一种基... 在实际陆战场环境中,作战人员无法随身携带GPU等大型计算设备,因此较难计算规模较大的神经网络参数,进而导致目标识别网络无法实时工作。现有的轻量级神经网络虽然解决了实时性的问题,但是不能满足准确率的要求。为此,文中提出了一种基于轻量级卷积神经网络的目标识别算法(E-MobilNet)。为了提升网络学习的效果,以现有深度学习的主要目标检测框架MobileNet-V2为基础,插入一种ELU函数作为激活函数。首先,使用扩张卷积来增加通道数,以获得更多的特征;接着,通过ELU函数激活输出特征,这样可以缓解线性部分的梯度消失,并且使非线性部分对输入变化的噪声更鲁棒;然后,通过残差连接的方式组合高层特征与低层特征的输出;最后,将全局池化的输出结果输入Softmax分类函数。实验数据表明,在同样的测试集和测试环境下,与现在主流的轻量级深度学习目标识别算法相比,E-MobileNet识别的准确率和每秒检测的帧率都有所提升。实验数据充分说明,使用ELU激活函数和全局池化层减少了参数的数量,增强了模型的泛化能力,提升了算法的鲁棒性,在保证神经网络模型轻量级的基础上有效地提高了目标的识别准确率。 展开更多
关键词 目标识别 轻量级模型 可分离卷积 残差网络 激活函数
在线阅读 下载PDF
面向天基监视的红外弱小飞行目标识别算法 被引量:1
2
作者 乔梦雨 谭金林 +2 位作者 刘亚虎 徐其志 万生阳 《中国空间科学技术》 CSCD 北大核心 2022年第5期125-132,共8页
针对当前红外弱小飞行目标特征不明显、背景干扰大等问题,提出了一种基于深度学习的红外弱小目标识别算法。检测框架以YOLOv4模型为基础,通过使用K-means++算法对训练集的候选框进行聚类处理,在初始大小的选取上放弃随机生成初始点的方... 针对当前红外弱小飞行目标特征不明显、背景干扰大等问题,提出了一种基于深度学习的红外弱小目标识别算法。检测框架以YOLOv4模型为基础,通过使用K-means++算法对训练集的候选框进行聚类处理,在初始大小的选取上放弃随机生成初始点的方式,在样本集里选取某一个样本作为初始中心使锚框(anchor)大小的选取更加合理。在模型结构中引入卷积注意力模块,使算法模型计算资源分配更合理,对红外弱小飞行目标的特征信息更加敏感。改进空间金字塔池化模块,使用平均池化可以更多保留图像的原始信息,降低天基成像中的噪点与坏点的影响。仿真实验表明采用K-means++计算Anchor大小时准确率可以达到80.13%,在加入了SPP和CBAM模块后之后在测试集上算法识别准确率达到了83.3%,经过对模型的修改有效提升了对红外弱小飞行目标识别的准确率。 展开更多
关键词 深度学习 卷积网络 红外弱小目标 天基监视 目标识别
在线阅读 下载PDF
基于改进多级特征金字塔的陆战场目标检测算法 被引量:5
3
作者 吴娇 王鹏 +1 位作者 乔梦雨 贺咪咪 《计算机应用与软件》 北大核心 2020年第10期155-161,共7页
在实际陆战场环境中,常常因为所检测的实际目标(如坦克、火炮、单兵等)存在多尺度识别率低、正负样本不均衡的难题,导致无法准确实时地实现陆战场目标检测。虽然现有的One-stage检测器提高了一定的速率但是不能满足准确率的要求。为此... 在实际陆战场环境中,常常因为所检测的实际目标(如坦克、火炮、单兵等)存在多尺度识别率低、正负样本不均衡的难题,导致无法准确实时地实现陆战场目标检测。虽然现有的One-stage检测器提高了一定的速率但是不能满足准确率的要求。为此提出一种基于改进的多层次特征金字塔网络(I-MLFPN)的陆战场目标检测算法,在提高识别精度的同时提升检测速度。以目标检测框架SSD为基础,提出改进的多层次特征金字塔网络(I-MLFPN)来构建更有效的特征金字塔,用于检测不同尺度的对象;采用Focal loss损失函数,解决因正负样本不均衡带来低准确率的问题。该算法将目标检测速度提高到24.8帧/s,目标检测准确率提高了7%,达到69.3%,有效解决了检测速度与准确率兼得的问题。 展开更多
关键词 深度学习 多层次特征金字塔 目标检测 通道混洗
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部