期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
时空特性下基于图卷积神经网络的风电集群功率短期预测方法
1
作者
乔宽龙
董存
+2 位作者
车建峰
蒋建东
王勃
《太阳能学报》
EI
CAS
CSCD
北大核心
2024年第5期95-103,共9页
为解决传统风电集群功率预测方法忽略了不同位置点气象关联特性及单场预测无法快速得到风电集群整体功率的问题,并充分考虑到风电集群耦合的复杂时空特性,提出一种融合注意力机制的时空图卷积神经网络的风电集群功率短期预测方法。首先...
为解决传统风电集群功率预测方法忽略了不同位置点气象关联特性及单场预测无法快速得到风电集群整体功率的问题,并充分考虑到风电集群耦合的复杂时空特性,提出一种融合注意力机制的时空图卷积神经网络的风电集群功率短期预测方法。首先,计算区域内风电场站历史功率之间的互信息,提取特征邻接矩阵,并结合影响集群功率的气象特征变量转化为气象图数据。其次,构建图卷积神经网络(GCN)模型,从非欧式空间提取气象图节点关联特征。并馈入融合注意力机制(AM)的门控循环单元网络(GRU)增强时序特征中关键信息对风电集群功率的贡献程度。最后,基于中国西部某省风电集群的实际运行数据,验证所提方法的先进性和适应性。
展开更多
关键词
风电功率
图数据结构
深度学习
时空特性
图卷积神经网络
注意力机制
在线阅读
下载PDF
职称材料
题名
时空特性下基于图卷积神经网络的风电集群功率短期预测方法
1
作者
乔宽龙
董存
车建峰
蒋建东
王勃
机构
郑州大学电气与信息工程学院
中国电力科学研究院有限公司可再生能源并网全国重点实验室
国家电力调度控制中心
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2024年第5期95-103,共9页
基金
国家自然科学基金(52177121)。
文摘
为解决传统风电集群功率预测方法忽略了不同位置点气象关联特性及单场预测无法快速得到风电集群整体功率的问题,并充分考虑到风电集群耦合的复杂时空特性,提出一种融合注意力机制的时空图卷积神经网络的风电集群功率短期预测方法。首先,计算区域内风电场站历史功率之间的互信息,提取特征邻接矩阵,并结合影响集群功率的气象特征变量转化为气象图数据。其次,构建图卷积神经网络(GCN)模型,从非欧式空间提取气象图节点关联特征。并馈入融合注意力机制(AM)的门控循环单元网络(GRU)增强时序特征中关键信息对风电集群功率的贡献程度。最后,基于中国西部某省风电集群的实际运行数据,验证所提方法的先进性和适应性。
关键词
风电功率
图数据结构
深度学习
时空特性
图卷积神经网络
注意力机制
Keywords
wind power
graph data structures
deep learning
spatio-temporal characteristics
graph convolutional neural network
attention mechanism
分类号
TM614 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
时空特性下基于图卷积神经网络的风电集群功率短期预测方法
乔宽龙
董存
车建峰
蒋建东
王勃
《太阳能学报》
EI
CAS
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部