期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
自闭症谱系障碍儿童静息状态下脑电微状态研究 被引量:4
1
作者 张锁良 万灵燕 +3 位作者 张志明 康健楠 李小俚 庞姣 《中国生物医学工程学报》 CAS CSCD 北大核心 2021年第6期653-661,共9页
利用微状态分析方法,在静息状态下的脑电图(EEG)尺度上探究自闭症谱系障碍(ASD)儿童与正常儿童(TD)在脑机制上的差异。根据Cartool中的准则和不同微状态类别的数目对于被试者EEG数据的解释程度,确定微状态类别的数目为4;使用原子化与凝... 利用微状态分析方法,在静息状态下的脑电图(EEG)尺度上探究自闭症谱系障碍(ASD)儿童与正常儿童(TD)在脑机制上的差异。根据Cartool中的准则和不同微状态类别的数目对于被试者EEG数据的解释程度,确定微状态类别的数目为4;使用原子化与凝聚层次聚类算法,分割出个人水平和组水平上的微状态类别,分别标记为微状态A、B、C和D。然后根据这4类微状态的地形图和EEG数据各时间点的GEV相关性,将数据拟合回EEG数据,最终得到微状态时间序列,提取时域上的参数特征,比较ASD组和TD组的差异。选取的时间参数为平均持续时间、发生频率、时间覆盖率和转移概率,并通过计算马尔可夫模型的方法探究微状态序列的独立性。结果表明,在ASD组vs TD组中表现有统计差异(P<0.05)的微状态时间参数有:持续时间(A:0.110±0.013 vs 0.180±0.048,C:0.140±0.024 vs 0.220±0.067,D:0.130±0.050 vs 0.190±0.037,单位:s)、时间覆盖率(A:22.0±5.4 vs 27.0±7.2,B:27.0±4.7 vs 18.0±5.5,单位:%)、发生频率(A:1.93±0.52 vs 1.55±0.22,B:2.08±0.46 vs 1.39±0.32,C:2.10±0.49 vs 1.47±0.30,D:1.78±0.19 vs 1.27±0.27,单位:次/s),且卡方检验不支持微状态类别之间在时间序列上是独立的零假设(P<0.01),提示微状态类别之间存在依赖性以及信息共享性。本研究为自闭症的评估提供了客观指标和科学依据。 展开更多
关键词 静息态脑电 自闭症谱系障碍微状态 自闭症谱系障碍 原子化与凝聚层次聚类
在线阅读 下载PDF
融合多特征脑电评估孤独症儿童 被引量:5
2
作者 赵杰 靳亚娟 +3 位作者 张志明 万灵燕 李小俚 康健楠 《中国生物医学工程学报》 CAS CSCD 北大核心 2021年第5期550-558,共9页
孤独症是一种复杂的神经发育性脑疾病,其早期发现和精确诊断非常重要。从54名孤独症和50名正常儿童的脑电信号中提取功率谱、熵、双谱相干性以及相干性等多特征进行分析研究,并对每组特征进行独立样本t检验分析组间差异;为提高分类性能... 孤独症是一种复杂的神经发育性脑疾病,其早期发现和精确诊断非常重要。从54名孤独症和50名正常儿童的脑电信号中提取功率谱、熵、双谱相干性以及相干性等多特征进行分析研究,并对每组特征进行独立样本t检验分析组间差异;为提高分类性能,提出融合多特征脑电进行分析,进一步采用最大相关最小冗余算法进行特征选择,最后利用支持向量机建立分类模型。结果显示,用单一特征分类,得到的分类准确率为72%,灵敏度为73.94%,特异性为67.74%,F1分数为69.74%,因此单一特征所建立的分类模型性能较差;在融合多特征进行分类时,选择前25个特征建立模型,具有较高的分类精度(93.45%±0.79%),此时灵敏度为91.73%±0.42%,特异性为94.01%±0.36%,F1分数为92.54%±0.31%,且AUC达到0.96,相比单一特征分类模型具有良好的性能。研究结果可以为孤独症的辅助诊断提供科学客观依据,为孤独症儿童后期康复提供可靠参考。 展开更多
关键词 孤独症 脑电信号 融合 机器学习 分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部