基于散射中心参数化模型和反向传播(back propagation,BP)神经网络,构建了一种针对目标全角度、宽频段下的远场电场预测网络,该网络将利用目标的位置、幅度、频率等数据信息实现远场电场实部与虚部的快速预测.首先,将对目标强散射点的...基于散射中心参数化模型和反向传播(back propagation,BP)神经网络,构建了一种针对目标全角度、宽频段下的远场电场预测网络,该网络将利用目标的位置、幅度、频率等数据信息实现远场电场实部与虚部的快速预测.首先,将对目标强散射点的位置以及强度等参数进行提取;然后,对二维角域以及频域进行区域划分,构建并联式的智能网络架构,从而建立散射中心参数化模型与高精度远场电场间的关系.该方法能够通过新型并联网络的训练,减小传统散射中心模型的频率、角度依赖性的影响,实现目标远场电场的快速获取.由于在网络设计时,充分借鉴了现有的模型中各散射参数对目标电场的影响,因此该神经网络具有清晰的物理意义以及突出的泛化能力.与传统的基于几何绕射理论(geometrical theory of diffraction,GTD)模型的电场重构方法相比,本文方法具有更高的准确性,实验结果表明提出的并联网络使得预测电场误差下降了18%以上,同时针对目标后向远场电场的预测,其相对均方根误差能够小于5%.展开更多
文摘基于散射中心参数化模型和反向传播(back propagation,BP)神经网络,构建了一种针对目标全角度、宽频段下的远场电场预测网络,该网络将利用目标的位置、幅度、频率等数据信息实现远场电场实部与虚部的快速预测.首先,将对目标强散射点的位置以及强度等参数进行提取;然后,对二维角域以及频域进行区域划分,构建并联式的智能网络架构,从而建立散射中心参数化模型与高精度远场电场间的关系.该方法能够通过新型并联网络的训练,减小传统散射中心模型的频率、角度依赖性的影响,实现目标远场电场的快速获取.由于在网络设计时,充分借鉴了现有的模型中各散射参数对目标电场的影响,因此该神经网络具有清晰的物理意义以及突出的泛化能力.与传统的基于几何绕射理论(geometrical theory of diffraction,GTD)模型的电场重构方法相比,本文方法具有更高的准确性,实验结果表明提出的并联网络使得预测电场误差下降了18%以上,同时针对目标后向远场电场的预测,其相对均方根误差能够小于5%.