期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries
1
作者 陈思汗 黎俊 +5 位作者 刘可可 孙笑晨 万京伟 翟慧宇 唐新峰 谭刚健 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期560-567,共8页
Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivit... Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivity.However,the typical synthesis of Ga-LLZO is usually accompanied by the formation of undesired LiGaO_(2) impurity phase that causes severe instability of the electrolyte in contact with molten Li metal during half/full cell assembly.In this study,we show that by simply engineering the defect chemistry of Ga-LLZO,namely,the lithium deficiency level,LiGaO_(2) impurity phase is effectively inhibited in the final synthetic product.Consequently,defect chemistry engineered Ga-LLZO exhibits excellent electrochemical stability against lithium metal,while its high room temperature ionic conductivity(~1.9×10^(-3)S·cm^(-1))is well reserved.The assembled Li/Ga-LLZO/Li symmetric cell has a superior critical current density of 0.9 mA·cm^(-2),and cycles stably for 500 hours at a current density of 0.3 mA·cm^(-2).This research facilitates the potential commercial applications of high performance Ga-LLZO solid electrolytes in ASSLBs. 展开更多
关键词 Ga-doped Li_7La_3Zr_2O_(12)(Ga-LLZO) defect chemistry engineering high room temperature ionic conductivity electrochemical stability
在线阅读 下载PDF
Spatial configuration engineering of perylenediimide-based non-fullerene electron transport materials for efficient inverted perovskite solar cells 被引量:1
2
作者 Mengmeng Zheng Yawei Miao +5 位作者 Ali Asgher Syed Cheng Chen Xichuan Yang Liming Ding Huaming Li Ming Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期374-382,共9页
Due to their excellent photoelectron chemical properties and suitable energy level alignment with perovskite,perylene diimide(PDI)derivatives are competitive non-fullerene electron transport material(ETM)candidates fo... Due to their excellent photoelectron chemical properties and suitable energy level alignment with perovskite,perylene diimide(PDI)derivatives are competitive non-fullerene electron transport material(ETM)candidates for perovskite solar cells(PSCs).However,the conjugated rigid plane structure of PDI units result in PDI-based ETMs tending to form large aggregates,limiting their application and photovoltaic performance.In this study,to restrict aggregation and further enhance the photovoltaic performance of PDI-type ETMs,two PDI-based ETMs,termed PDO-PDI2(dimer)and PDO-PDI3(trimer),were constructed by introducing a phenothiazine 5,5-dioxide(PDO)core building block.The research manifests that the optoelectronic properties and film formation property of PDO-PDI2 and PDO-PDI3 were deeply affected by the molecular spatial configuration.Applied in PSCs,PDO-PDI3 with threedimensional spiral molecular structure,exhibits superior electron extraction and transport properties,further achieving the best PCE of 18.72%and maintaining 93%of its initial efficiency after a 720-h aging test under ambient conditions. 展开更多
关键词 Non-fullerene Electron transport material Perovskite solar cell Inverted structure
在线阅读 下载PDF
Heterointerface Engineering of β‑Chitin/Carbon Nano‑Onions/Ni-P Composites with Boosted Maxwell‑Wagner‑Sillars Effect for Highly Efficient Electromagnetic Wave Response and Thermal Management 被引量:9
3
作者 Fei Pan Lei Cai +7 位作者 Yuyang Shi Yanyan Dong Xiaojie Zhu Jie Cheng Haojie Jiang Xiao Wang Yifeng Jiang Wei Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第5期206-223,共18页
The rational construction of microstructure and composition with enhanced Maxwell-Wagner-Sillars effect(MWSE)is still a challenging direction for reinforcing electromagnetic wave(EMW)absorption performance,and the rel... The rational construction of microstructure and composition with enhanced Maxwell-Wagner-Sillars effect(MWSE)is still a challenging direction for reinforcing electromagnetic wave(EMW)absorption performance,and the related EMW attenuation mechanism has rarely been elucidated.Herein,MWSE boostedβ-chitin/carbon nano-onions/Ni–P composites is prepared according to the heterointerface engineering strategy via facile layer-by-layer electrostatic assembly and electroless plating techniques.The heterogeneous interface is reinforced from the aspect of porous skeleton,nanomaterials and multilayer construction.The composites exhibit competitive EMW response mechanism between the conductive loss and the polarization/magnetic loss,as describing like the story of“The Hare and the Tortoise”.As a result,the composites not only achieve a minimum reflection loss(RL_(min))of−50.83 dB and an effective bandwidth of 6.8 GHz,but also present remarkable EMW interference shielding effectiveness of 66.66 dB.In addition,diverse functions such as good thermal insulation,infrared shielding and photothermal performance were also achieved in the hybrid composites as a result of intrinsic morphology and chemicophysics properties.Therefore,we believe that the boosted MWSE open up a novel orientation toward developing multifunctional composites with high-efficient EMW response and thermal management. 展开更多
关键词 β-chitin Nano onion carbon Electromagnetic wave absorption Electromagnetic interference shielding Photothermal
在线阅读 下载PDF
A class of Ga-Al-P-based compounds with disordered lattice as advanced anode materials for Li-ion batteries 被引量:1
4
作者 Yanhong Li Peixun Xiong +2 位作者 Lei Zhang Songliu Yuan Wenwu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期12-21,共10页
Phosphides possess large reversible capacity, small voltage hysteresis, and high energy efficiency, thus promising to be new anode candidates to replace commercial graphite for Li-ion batteries(LIBs).Through a facile ... Phosphides possess large reversible capacity, small voltage hysteresis, and high energy efficiency, thus promising to be new anode candidates to replace commercial graphite for Li-ion batteries(LIBs).Through a facile mechanochemistry method, we prepare a novel ternary phosphide of Ga0.5Al0.5P whose crystalline structure is determined to be a cation-disordered cubic zinc sulfide structure according to XRD refinement. As an anode for LIBs, the Ga0.5Al0.5P delivers a reversible capacity of 1,352 mA h g^(-1)at100 mA g^(-1)with an initial Coulombic efficiency(ICE) up to 90.0% based on a reversible Li-storage mechanism integrating intercalation and subsequent conversion processes as confirmed by various characterizations techniques including in-situ XRD, ex-situ Raman, and XPS and electrochemical characterizations.Graphite-modified Ga0.5Al0.5P exhibits a long-lasting cycling stability of retaining 1,182 mA h g^(-1)after300 cycles at 100 m A g^(-1), and 625 mA h g^(-1)after 800 cycles at 2,000 mA g^(-1), and a high-rate performance of remaining 342 m A h g^(-1)at 20,000 mA g^(-1). The outstanding electrochemical performances can be attributed to enhanced reaction kinetics enabled by the capacitive behaviors and the faster Liion diffusion enabled by the cation-mixing. Importantly, by tuning the cationic ratio, we develop a novel series of cation-mixed compounds of Ga_(1/3)Al_(2/3)P, Ga_(1/4)Al_(3/4)P, Ga_(1/5)Al_(4/5)P, Ga_(2/3)Al_(1/3)P, Ga_(3/4)Al_(1/4)P, and Ga_(4/5)Al_(1/5)P, which demonstrate large capacity, high ICE, and suitable anode potentials. Broadly, these compounds with disordered lattices probably present novel physicochemical properties, and high electrochemical performances, thus providing a new perspective for new materials design. 展开更多
关键词 Multinary phosphides Disordered lattice ANODE Li-ion batteries
在线阅读 下载PDF
Optimizing high-coordination shell of Co-based single-atom catalysts for efficient ORR and zinc-air batteries 被引量:1
5
作者 Yugang Qi Qing Liang +9 位作者 Kexin Song Xinyan Zhou Meiqi Liu Wenwen Li Fuxi Liu Zhou Jiang Xu Zou Zhongjun Chen Wei Zhang Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期306-314,I0007,共10页
Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and... Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion. 展开更多
关键词 ELECTROCATALYTIC Oxygen reduction reaction Single atom catalyst Shell coordination optimization
在线阅读 下载PDF
Enhancing the cycling stability of Na-ion batteries by bonding MoS2 on assembled carbon-based materials
6
作者 Pin Song Jun Di +14 位作者 Lixing Kang Manzhang Xu Bijun Tang Jun Xiong Jiewu Cui Qingsheng Zeng Jiadong Zhou Yongmin He Qundong Fu Juan Peng Shasha Guo Bo Lin Jingyu Zhang Peng Meng Zheng Liu 《Nano Materials Science》 CAS 2019年第4期310-317,共8页
Room temperature Na-ion batteries(SIBs) show great potential for use as renewable energy storage systems.However, the large-scale application of SIBs has been hindered by the lack of an ideal SIBs anode material. We s... Room temperature Na-ion batteries(SIBs) show great potential for use as renewable energy storage systems.However, the large-scale application of SIBs has been hindered by the lack of an ideal SIBs anode material. We synthesized MoS2 on carbonized graphene-chitosan(G-C) using the hydrothermal method. The strong interaction between the MoS2 and the G-C greatly improved the electron transport rate and maintained the structural stability of the electrode, which lead to both an excellent rate capability and long cycle stability. The G-C monolith was proven to enhance the electrical conductivity of the composites and served as a matrix for uniformly dispersing active MoS2 nanosheets(NSs), as well as being a buffer material to adapt to changes in volume during the cycle.Serving as an anode material for SIBs, the MoS2-G-C electrode showed good cycling stability(527.3mAh g-1 at100 m A g-1 after 200 cycles), excellent rate capability, and a long cycle life(439.1 m Ah g-1 at 1 A g-1 after 200 cycles). 展开更多
关键词 Na-ion batteries Carbon-based materials MOS2 Long cycle life
在线阅读 下载PDF
Molecular Dynamics Simulation of Shock Response of CL-20 Co-crystals Containing Void Defects
7
作者 Changlin Li Wei Yang +5 位作者 Qiang Gan Yajun Wang Lin Liang Wenbo Zhang Shuangfei Zhu Changgen Feng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期364-374,共11页
To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitro... To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitrobenzene(DNB),solvents ligands dimethyl carbonate(DMC) and gamma-butyrolactone(GBL)with void were simulated,using molecular dynamics method and reactive force field.It is found that the CL-20 co-crystals with void defects will form hot spots when impacted,significantly affecting the decomposition of molecules around the void.The degree of molecular fragmentation is relatively low under the reflection velocity of 2 km/s,and the main reactions are the formation of dimer and the shedding of nitro groups.The existence of voids reduces the safety of CL-20 co-crystals,which induced the sensitivity of energetic co-crystals CL-20/TNT and CL-20/DNB to increase more significantly.Detonation has occurred under the reflection velocity of 4 km/s,energetic co-crystals are easier to polymerize than solvent co-crystals,and are not obviously affected by voids.The results show that the energy of the wave decreases after sweeping over the void,which reduces the chemical reaction frequency downstream of the void and affects the detonation performance,especially the solvent co-crystals. 展开更多
关键词 CL-20 co-crystals Molecular dynamics simulation Reactive forcefield Impact response Hot spot Void defect
在线阅读 下载PDF
Alkylene-functionality in bridged and fused nitrogen-rich poly-cyclic energetic materials:Synthesis,structural diversity and energetic properties
8
作者 Man Xu Nanxi Xiang +2 位作者 Ping Yin Qi Lai Siping Pang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期18-46,共29页
From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exh... From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exhibits several advantages in the regulation of energetic properties,the nonaromatic heterocycles,assembling nitramino explosophores with simple alkyl bridges,still have prevailed in benchmark materials.The methylene bridge plays a pivotal role in the constructions of the classic nonaromatic heterocycle-based energetic compounds,e.g.,hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),whereas ethylene bridge is the core moiety of state-of-the-art explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20).In this context,it is of great interest to employ simple and practical bridges to assemble aromatic and nonaromatic nitrogen-rich heterocycles,thereby expanding the structural diversity of energetic materials,e.g.,bridged and fused nitrogen-rich poly-heterocycles.Furthermore,alkyl-bridged poly-heterocycles highlight the potential for the open chain type of energetic materials.In this review,the development of alkyl bridges in linking nitrogen-rich heterocycles is presented,and the perspective of the newly constructed energetic backbones is summarized for the future design of advanced energetic materials. 展开更多
关键词 Energetic materials Alkyl bridge strategy Nitrogen-rich azoles Fused heterocycles AZOLES
在线阅读 下载PDF
Growth Control of Quasi-two-dimensional Perovskites:Structure-dependent Exciton and Charge Behavior
9
作者 DONG Wei LI Jing +2 位作者 YIN Wenxu ZHANG Xiaoyu ZHENG Weitao 《发光学报》 EI CAS CSCD 北大核心 2024年第11期1767-1781,共15页
While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LED... While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LEDs).Rather,quasi-two-dimensional(Q-2D)perovskites offer high photoluminescence quantum yield along with the advantages of bulk perovskites,making them ideal for high-performance LEDs.In Q-2D perovskites,the structure(which includes factors like crystal orientation,phase distribution,and layer thickness)directly influences how excitons and charge carriers behave within the material.Growth control techniques,such as varying the synthesis conditions or employing methods,allow for fine-tuning the structural characteristics of these materials,which in turn affect exciton dynamics and charge transport.This review starts with a description of the basic properties of Q-2D perovskites,examines crystal growth in solution,explains how structure affects energy transfer behavior,and concludes with future directions for Q-2D perovskite LEDs.By understanding and optimizing the structure-dependent behavior,researchers can better control exciton dynamics and charge transport,which are crucial for enhancing the performance of optoelectronic devices like solar cells and LEDs. 展开更多
关键词 quasi-two-dimensional perovskites light-emitting diodes growth control energy transfer
在线阅读 下载PDF
The safety aspect of sodium ion batteries for practical applications
10
作者 Yingshuai Wang Runqing Ou +5 位作者 Jingjing Yang Yuhang Xin Preetam Singh Feng Wu Yumin Qian Hongcai Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期407-427,I0009,共22页
Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and... Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and cathodes bring about frequent accidents regarding battery fires and explosions and impede the development of high-performance SIBs.Therefore,safety analysis and high-safety battery design have become prerequisites for the development of advanced energy storage systems.The reported reviews that only focus on a specific issue are difficult to provide overall guidance for building high-safety SIBs.To overcome the limitation,this review summarizes the recent research progress from the perspective of key components of SIBs for the first time and evaluates the characteristics of various improvement strategies.By orderly analyzing the root causes of safety problems associated with different components in SIBs(including electrolytes,anodes,and cathodes),corresponding improvement strategies for each component were discussed systematically.In addition,some noteworthy points and perspectives including the chain reaction between security issues and the selection of improvement strategies tailored to different needs have also been proposed.In brief,this review is designed to deepen our understanding of the SIBs safety issues and provide guidance and assistance for designing high-safety SIBs. 展开更多
关键词 Sodium ion batteries SAFETY Organic electrolytes modification Solid-state electrolyte Anode bulk modification Cathode bulk design
在线阅读 下载PDF
Flexible and Waterproof 2D/1D/0D Construction of MXene-Based Nanocomposites for Electromagnetic Wave Absorption,EMI Shielding,and Photothermal Conversion 被引量:23
11
作者 Zhen Xiang Yuyang Shi +2 位作者 Xiaojie Zhu Lei Cai Wei Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第10期77-97,共21页
High-performance electromagnetic wave absorption and electromagnetic interference(EMI)shielding materials with multifunctional characters have attracted extensive scientific and technological interest,but they remain ... High-performance electromagnetic wave absorption and electromagnetic interference(EMI)shielding materials with multifunctional characters have attracted extensive scientific and technological interest,but they remain a huge challenge.Here,we reported an electrostatic assembly approach for fabricating 2D/1D/0D construction of Ti_(3)C_(2)Tx/carbon nanotubes/Co nanoparticles(Ti_(3)C_(2)Tx/CNTs/Co)nanocomposites with an excellent electromagnetic wave absorption,EMI shielding efficiency,flexibility,hydrophobicity,and photother-mal conversion performance.As expected,a strong reflection loss of-85.8 dB and an ultrathin thickness of 1.4 mm were achieved.Mean-while,the high EMI shielding efficiency reached 110.1 dB.The excel-lent electromagnetic wave absorption and shielding performances were originated from the charge carriers,electric/magnetic dipole polariza-tion,interfacial polarization,natural resonance,and multiple internal reflections.Moreover,a thin layer of polydimethylsiloxane rendered the hydrophilic hierarchical Ti_(3)C_(2)Tx/CNTs/Co hydrophobic,which can prevent the degradation/oxidation of the MXene in high humidity condition.Interestingly,the Ti_(3)C_(2)Tx/CNTs/Co film exhibited a remark-able photothermal conversion performance with high thermal cycle stability and tenability.Thus,the multifunctional Ti_(3)C_(2)Tx/CNTs/Co nanocomposites possessing a unique blend of outstanding electromagnetic wave absorption and EMI shielding,light-driven heating perfor-mance,and flexible water-resistant features were highly promising for the next-generation intelligent electromagnetic attenuation system. 展开更多
关键词 Ti_(3)C_(2)Tx CNTS Co Low-dimensional materials Electromagnetic wave absorption EMI shielding MULTIFUNCTION
在线阅读 下载PDF
Sandwich-Like Fe&TiO2@C Nanocomposites Derived from MXene/Fe-MOFs Hybrids for Electromagnetic Absorption 被引量:23
12
作者 Baiwen Deng Zhen Xiang +3 位作者 Juan Xiong Zhicheng Liu Lunzhou Yu Wei Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第4期121-136,共16页
Electromagnetic pollution has been causing a series of problems in people’s life,and electromagnetic absorbers with lightweight and broad absorbing bandwidth properties are widely desired.In this work,novel sandwich-... Electromagnetic pollution has been causing a series of problems in people’s life,and electromagnetic absorbers with lightweight and broad absorbing bandwidth properties are widely desired.In this work,novel sandwich-like 2D laminated Fe&TiO2 nanoparticles@C nanocomposites were rationally designed and successfully developed from the MXene–MOFs hybrids.The formation of Fe and rutile-TiO2 nanoparticles sandwiched by the two-dimensional carbon nanosheets provided strong electromagnetic energy attenuation and good impedance matching for electromagnetic wave(EMW)absorption.As expected,the nanocomposites achieved a broad effective absorption bandwidth of 6.5 GHz at a thickness of only 1.6 mm and the minimum reflection loss(RL)value of−51.8 dB at 6.6 GHz with a thickness of 3 mm.This work not only provides a good design and fabricating concept for the laminated metal and functional nanoparticles@C nanocomposites with good EMW absorption,but also offers an important guideline to fabricate various two-dimensional nanocomposites derived from the MXene precursors. 展开更多
关键词 MXene Metal–organic frameworks NANOCOMPOSITES Electromagnetic wave absorption
在线阅读 下载PDF
Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer 被引量:8
13
作者 Haipeng Li Liancheng Sun +3 位作者 Yongguang Zhang Taizhe Tan Gongkai Wang Zhumabay Bakenov 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1276-1281,共6页
The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great co... The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great concern with a great number of publications dedicated to its mitigation. In this contribution, a three-dimensional(3D) reduced graphene oxide/activated carbon(RGO/AC) film, synthesized by a simple hydrothermal method and convenient mechanical pressing, is sandwiched between the separator and the sulfur-based cathode, acting as a functional interlayer to capture and trap polysulfide species. Consequently, the Li/S cell with this interlayer shows an impressive initial discharge capacity of 1078 m Ah/g and a reversible capacity of 655 m Ah/g even after 100 cycles. The RGO/AC interlayer impedes the movement of polysulfide while providing unimpeded channels for lithium ion mass transfer. Therefore, the RGO/AC interlayer with a well-designed structure represents strong potential for high-performance Li/S batteries. 展开更多
关键词 Lithium/sulfur battery Shuttle effect Functional interlayer Reduced graphene oxide/activated carbon composite
在线阅读 下载PDF
MOFs fertilized transition-metallic single-atom electrocatalysts for highly-efficient oxygen reduction: Spreading the synthesis strategies and advanced identification 被引量:5
14
作者 Kexin Song Yu Feng +1 位作者 Wei Zhang Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期391-422,共32页
Metal-organic frameworks(MOFs) have been widely used in oxygen reduction reaction(ORR) of fuel cells and metal-air batteries, attributed to their unique structures and compositions. Recently, the preparation of transi... Metal-organic frameworks(MOFs) have been widely used in oxygen reduction reaction(ORR) of fuel cells and metal-air batteries, attributed to their unique structures and compositions. Recently, the preparation of transition-metallic single-atom electrocatalysts(TM-SACs) using MOFs as precursors or templates has made great progress. Herein, the development history of SACs prepared based on MOFs and their characterization are overviewed firstly, and then several strategies are summarized for preparing TM-SACs using MOFs and further modification. Finally, the challenges and opportunities confronted by TM-SACs are fully discussed. Consequently, our work can guide the realization of TM-SACs abundant with high activity, high loading and high stability. 展开更多
关键词 Transition-metallic single-atom electrocatalysts(TM-SACs) Oxygen reduction reaction(ORR) Metal-organic frameworks(MOFs) Electron microscopy Spectroscopy
在线阅读 下载PDF
A review on the synthesis of transition metal nitride nanostructures and their energy related applications 被引量:4
15
作者 Qiao Luo Congcong Lu +1 位作者 Lingran Liu Maiyong Zhu 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期406-437,共32页
Transition metal nitrides(TMN)have recently grabbed immensely appealing as ideal active materials in energy storage and catalysis fields on account of their remarkable electrical conductivity,excellent chemical stabil... Transition metal nitrides(TMN)have recently grabbed immensely appealing as ideal active materials in energy storage and catalysis fields on account of their remarkable electrical conductivity,excellent chemical stability,wide band gap and tunable morphology.Both pure TMN and TMN-based materials have been extensively studied concerned with their preparation approaches,nanostructures,and favored performance in various applications.However,the processes towards synthesis of TMN are numerous and complex.Choosing appropriate method to obtain target TMN with desired structure is crucial,which further affects its practical application performance.Herein,this review offers a timely and comprehensive summary of the synthetic ways to TMN and their application in energy related domains.The synthesis section is categorized into in-situ and ex-situ based on where the N element in TMN origins from.Then,overviews on the energy related applications including energy storage,electrocatalysis and photocatalysis are discussed.In the end,the problems to be solved and the development trend of the synthesis and application of transition metal nitrides are prospected. 展开更多
关键词 Transition metal nitride IN-SITU Ex-situ Energy storage ELECTROCATALYSIS PHOTOCATALYSIS
在线阅读 下载PDF
Unraveling the degradation mechanism of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) at the high cut-off voltage for lithium ion batteries 被引量:5
16
作者 Liming Wang Qingmei Su +10 位作者 Bin Han Weihao Shi Gaohui Du Yunting Wang Huayv Li Lin Gu Wenqi Zhao Shukai Ding Miao Zhang Yongzhen Yang Bingshe Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期428-437,I0011,共11页
LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)layered oxides have been regarded as promising alternative cathodes for the next generation of high-energy lithium ion batteries(LIBs)due to high discharge capacities and energy ... LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)layered oxides have been regarded as promising alternative cathodes for the next generation of high-energy lithium ion batteries(LIBs)due to high discharge capacities and energy densities at high operation voltage.However,the capacity fading under high operation voltage still restricts the practical application.Herein,the capacity degradation mechanism of NCM811 at atomic-scale is studied in detail under various cut-off voltages using aberration-corrected scanning transmission electron microscopy(STEM).It is observed that the crystal structure of NCM811 evolution from a layered structure to a rock-salt phase is directly accompanied by serious intergranular cracks under 4.9 V,which is distinguished from the generally accepted structure evolution of layered,disordered layered,defect rock salt and rock salt phases,also observed under 4.3 and 4.7 V.The electron energy loss spectroscopy analysis also confirms the reduction of Ni and Co from the surface to the bulk,not the previously reported only Li/Ni interlayer mixing.The degradation mechanism of NCM811 at a high cut-off voltage of4.9 V is attributed to the formation of intergranular cracks induced by defects,the direct formation of the rock salt phase,and the accompanied reduction of Ni^(2+)and Co^(2+)phases from the surface to the bulk. 展开更多
关键词 Ni-rich layered cathode Electrochemical performance Degradation mechanism Crack Atomic scale
在线阅读 下载PDF
Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries 被引量:10
17
作者 Yuting Zhu Kaihang Yue +5 位作者 Chenfeng Xia Shahid Zaman Huan Yang Xianying Wang Ya Yan Bao Yu Xia 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第9期164-192,共29页
Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries(ZABs).Owing to the high specific surface area,controllable pore size and unsaturated metal active sites,metal-organic framewo... Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries(ZABs).Owing to the high specific surface area,controllable pore size and unsaturated metal active sites,metal-organic frameworks(MOFs)derivatives have been widely studied as oxygen electrocatalysts in ZABs.To date,many strategies have been developed to generate efficient oxygen electrocatalysts from MOFs for improving the performance of ZABs.In this review,the latest progress of the MOF-derived non-noble metal-oxygen electrocatalysts in ZABs is reviewed.The performance of these MOF-derived catalysts toward oxygen reduction,and oxygen evolution reactions is discussed based on the categories of metal-free carbon materials,single-atom catalysts,metal cluster/carbon composites and metal compound/carbon composites.Moreover,we provide a comprehensive overview on the design strategies of various MOF-derived non-noble metal-oxygen electrocatalysts and their structure-performance relationship.Finally,the challenges and perspectives are provided for further advancing the MOF-derived oxygen electrocatalysts in ZABs. 展开更多
关键词 Metal-organic framework Non-noble metal Oxygen electrocatalysts Air electrode Zinc-air batteries
在线阅读 下载PDF
Optimizing the micropore-to-mesopore ratio of carbon-fiber-cloth creates record-high specific capacitance 被引量:5
18
作者 Ying Zheng Ting Deng +1 位作者 Wei Zhang Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期210-216,I0008,共8页
The application of commercial carbon fiber cloth(CFC) in energy storage equipment is limited by its low specific capacitance and energy density. By a simple one-step activation treatment, the specific surface area of ... The application of commercial carbon fiber cloth(CFC) in energy storage equipment is limited by its low specific capacitance and energy density. By a simple one-step activation treatment, the specific surface area of CFCs with porous structure can be increased considerably from 3.9 up to 875 m^2/g and the electrochemical properties of CFCs can be improved by three orders of magnitude(1324 mF/cm^2). Moreover,the hydrophobicity of CFCs can be transformed into superhydrophilicity. However, the electrochemical performance of CFCs does not show a positive correlation with specific surface area but have a strong relationship with the hierarchical pore distribution forged by the annealing treatment. Only moderate micropore and mesoporous ratio enables optimizing the electrochemical performance of CFCs. 展开更多
关键词 Pore distribution Hierarchical pores integration SUPERCAPACITORS Carbon fiber cloth Electrochemical performance
在线阅读 下载PDF
There is plenty of space in the MXene layers: The confinement and fillings 被引量:9
19
作者 Ming Lu Wenjuan Han +2 位作者 Haibo Li Wei Zhang Bingsen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期344-363,I0011,共21页
MXenes have emerged as a new kind of 2D transition metal carbides,nitrides and carbonitrides.Origined from the unique 2D structure with a luxuriant combination of elements,MXenes drive a series of the investigations r... MXenes have emerged as a new kind of 2D transition metal carbides,nitrides and carbonitrides.Origined from the unique 2D structure with a luxuriant combination of elements,MXenes drive a series of the investigations related to energy storage and conversion,biometrics and sensing,lighting,purification and separation.For 2D layered MXene materials,the interspacing confined by the independent MXenes layers affords a distinct confinement space,which is similar to a nanoreactor that can be utilized for the storage of ions,nanoparticles,nanowires,and the materials with 2D or 3D structure.These fillings confined by MXene layers afford new opptunities for achieving improved properties and performance via complementary natural features,further the synergistic effect.Herein,we summarize the recent reports concerning with the confinded MXenes spacing and the fillings.The modification of interlayer distance lead by the intercalants were explored.We expect that our review may offer the route for a series of ongoing studies to address the MXenes. 展开更多
关键词 MXenes Interlayer distance INTERCALATION STRUCTURE Fillings
在线阅读 下载PDF
Equivalent protection factor of bi-layer ceramic metal structures 被引量:4
20
作者 Govind Gour Sridhar Idapalapati +1 位作者 Wei Liang Goh Xiao-peng Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期384-400,共17页
With increasing ballistic threat levels,there is ever more demand on developing ceramic armor designs with improved performance.This paper presents finite element simulations that investigate the performance of silico... With increasing ballistic threat levels,there is ever more demand on developing ceramic armor designs with improved performance.This paper presents finite element simulations that investigate the performance of silicon carbide ceramic with steel 4340 backing material and titanium alloy,graphite as buffer layers when subjected to normal and oblique impacts by a tungsten alloy long rod projectile(LRP).Depth of penetration from experimental measurements is compared with simulations to confirm the validity of constitutive,failure model parameters.Titanium alloy cover plate and graphite interface weak layer laterally spread the impact shock away from the SiC tile and reduces the amplification of the stress accumulation at the front surface of the SiC tile.The dwelling time increases before it penetrates into ceramic armor.Further,using AUTODYN®numerical simulations detailed parametric study is carried out to identify the minimum areal density armor for a given ballistic limit velocity.The equivalent protection factor for the bi-layer armor is a simple function of the cosine of the angle of impact. 展开更多
关键词 Ceramic armor Normal and NATO 60⁰impact Ballistic limit velocity Equivalent protection factor(EPF)
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部