Across North America, forests dominated by Quercus rubra L. (northern red oak), a moderately shade-tolerant tree species, are undergoing successional replacement by shade-tolerant competitors. Under closed canopies, Q...Across North America, forests dominated by Quercus rubra L. (northern red oak), a moderately shade-tolerant tree species, are undergoing successional replacement by shade-tolerant competitors. Under closed canopies, Q. rubra seedlings are unable to compete with these shade-tolerant species and do not recruit to upper forest strata. In Europe, natural regeneration of introduced Q. rubra is often successful despite the absence of fire, which promotes regeneration in the native range. Considering that understorey light availability is a major factor affecting recruitment of seedlings, we hypothesized that Q. rubra seedlings are more shade tolerant in the introduced range than in the native range. Morphological traits and biomass allocation patterns of seedlings indicative of shade tolerance were compared for Q. rubra and three co-occurring native species in two closed-canopy forests in the native range (Ontario, Canada) and introduced range (Baden-Württemburg, Germany). In the native range, Q. rubra allocated a greater proportion of biomass to roots, while in the introduced range, growth and allocation patterns favored the development of leaves. Q. rubra seedlings had greater annual increases in height, diameter and biomass in the introduced range. Q. rubra seedlings in the introduced range were also younger;however, they had a mean area per leaf and a total leaf area per seedling that were five times greater than seedlings in the native range. Such differences in morphological traits and allocation patterns support the hypothesis that Q. rubra expresses greater shade tolerance in the introduced range, and that natural regeneration of Q. rubra is not as limited by shade as in the native range. The ability of Q. rubra seedlings to grow faster under closed canopies in Europe may explain the discrepancy in regeneration success of this species in native and introduced ranges. Future research should confirm findings of this study over a greater geographical range in native and introduced ecosystems, and examine the genetic and environmental bases of observed differences in plant traits.展开更多
Within the semi-desert landscape of northern Libya, two sub-humid escarpments occur: Al-Akhdar in the east and Nafusa (Jabal Al-Gharbi) in the west. This study compares plant communities in the two regions, which are ...Within the semi-desert landscape of northern Libya, two sub-humid escarpments occur: Al-Akhdar in the east and Nafusa (Jabal Al-Gharbi) in the west. This study compares plant communities in the two regions, which are along an elevation gradient, in terms of species composition and diversity, frequency of different Raunkiaer life forms, and reproductive phenology. The two regions differed in species composition and life-form frequency between regions and between elevation zones within each region. Patterns were associated with the lower rainfall and lower moisture-holding capacity of soils at Nafusa, resulting in more xeric conditions. Only 13% of species were shared between the two regional landscapes. Species diversity, life-form frequency, and duration of the flowering-fruiting phenophase were all affected by elevation above sea level. The duration of flowering and fruiting in spring and fall was associated with environmental conditions, although there were different thresholds in the two regions. There was both a spring and fall episode of flowering at Nafusa, but only spring flowering at Al-Akhdar. It is anticipated that there will be a gradual shift of plant communities to higher elevations and loss of certain sensitive species in response to ongoing climate change.展开更多
We sampled twenty populations of the vulnera- ble endemic shrub or tree, Arbutus pavarii Pampan., at different elevations and aspects within the A1-Akhdar mountainous region of Libya. Our sampling sites were at elevat...We sampled twenty populations of the vulnera- ble endemic shrub or tree, Arbutus pavarii Pampan., at different elevations and aspects within the A1-Akhdar mountainous region of Libya. Our sampling sites were at elevations ranging from 285 to 738 m above sea level, and several different habitats: vallies (locally known as wadis), north- and south-facing slopes, and mountaintops. All individuals within each quadrat were studied. Population size and structure, and plant functional traits were assessed. None of the populations had a stable distribution of size classes. Some consisted mostly of small plants, with little or no fruit production; others consisted only of mid-sized and large plants, with high fruit production, but no juvenile recruitment. There was a significant increase in percent cover with increasing elevation; reproductive output (the number of fruits per branch and total number of fruits per individual) also generally increased with elevation. In some of these populations the lack of recruitment, and in others the failure to produce fruit, together constituted serious demographic threats. In light of these results, recommen- dations are made for conservation of this vulnerable endemic species.展开更多
The chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) of 16 Populus species (Section Leuce) and their F1 generation were detected using PCR-RFLP technique. The results show that cpDNA in the F1 generation of...The chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) of 16 Populus species (Section Leuce) and their F1 generation were detected using PCR-RFLP technique. The results show that cpDNA in the F1 generation of 22 hybrid combinations was inherited maternally, which supported the conclusions of the study of plasmid cytology. The mtDNA fragments amplified by PCR were consistent with the restriction maps in all hybrid combinations and no polymorphism was detected, indicating that the Section Leuce is highly conserved in mitochondrial gene sequences. These results provided direct evidence of maternal chloroplast inheritance in Populus tomentosa, P. bolleana, P. davidiana, P. adenopoda, P. tomentosa × P. bolleana, P. alba × P. glandulosa and P. alba × P. tomentosa.展开更多
In a single step photolithography, muhi-level microfluidic device is fabricated by printing novel architectures on a film photomasks. The whole fabrication process is executed by classical PCB technology without the n...In a single step photolithography, muhi-level microfluidic device is fabricated by printing novel architectures on a film photomasks. The whole fabrication process is executed by classical PCB technology without the need to access clean room facilities. Different levels of protruding features on PCB master are produced by exposing a photomask with specifically arranged "windows and rims" architectures, followed by chemical wet etching. Poly(dimethylsiloxane)(PDMS) is then molded against the positive relief master to generate microfluidic device featured with multi-level sandbag structure and peripheral microchannels. This sandbag structure is an analog to traditional dam or weir for particle entrapment. The microstructure does not collapse when subjected to applied pressure, which is suitable for operation on elastic PDMS substrate.Typical immunocytochemcial staining assays were performed in the microdevice to demonstrate the applicability of the sandbag structure for cellular analysis. This simplified microfabrication process employs low-cost materials and minimal specialized equipment and can reproducibly produce mask lines with about 20 μm in width, which is sufficient for most microfluidic applications.展开更多
Insulin resistance is a hallmark of type-2 diabetes(T2D)pathogenesis.Because skeletal muscle(SkM)is the major tissue for insulin-mediated glucose disposal,insulin resistance in SkM is considered a major risk factor fo...Insulin resistance is a hallmark of type-2 diabetes(T2D)pathogenesis.Because skeletal muscle(SkM)is the major tissue for insulin-mediated glucose disposal,insulin resistance in SkM is considered a major risk factor for developing T2D.Thus,the identifi cation of compounds that enhance the ability of SkM to take up glucose is a promising strategy for preventing T2D.Our previous work showed that kaempferol,a fl avonol present in many foods,improves insulin sensitivity in obese mice,however,the mechanism underlying this beneficial action remains unclear.Here,we show that kaempferol directly stimulates glucose uptake and prevents lipotoxicity-impaired glucose uptake in primary human SkM.Kaempferol stimulates Akt phosphorylation in a time-dependent manner in human SkM cells.The effect of kaempferol on glucose uptake was blunted by inhibition of glucose transporter 4,phosphoinositide 3-kinase(PI3K),or AMPK.In addition,kaempferol induced AMPK phosphorylation,and inhibition of AMPK prevented kaempferol-stimulated Akt phosphorylation.In vivo,kaempferol administration induced rapid glucose disposal accompanied with increased Akt and AMPK phosphorylation in SkM tissue of the mice.Taken together,these fi ndings suggest that kaempferol stimulates glucose uptake in SkM via an AMPK/Akt dependent mechanism,and it may be a viable therapeutic agent for insulin resistance.展开更多
基金supported by the Ontario Centres of Excellence,Nipissing University Internal Research FundOntario/Baden-Württemberg Student Exchange Programthe Ontario/Baden-Württemberg Faculty Research Exchange
文摘Across North America, forests dominated by Quercus rubra L. (northern red oak), a moderately shade-tolerant tree species, are undergoing successional replacement by shade-tolerant competitors. Under closed canopies, Q. rubra seedlings are unable to compete with these shade-tolerant species and do not recruit to upper forest strata. In Europe, natural regeneration of introduced Q. rubra is often successful despite the absence of fire, which promotes regeneration in the native range. Considering that understorey light availability is a major factor affecting recruitment of seedlings, we hypothesized that Q. rubra seedlings are more shade tolerant in the introduced range than in the native range. Morphological traits and biomass allocation patterns of seedlings indicative of shade tolerance were compared for Q. rubra and three co-occurring native species in two closed-canopy forests in the native range (Ontario, Canada) and introduced range (Baden-Württemburg, Germany). In the native range, Q. rubra allocated a greater proportion of biomass to roots, while in the introduced range, growth and allocation patterns favored the development of leaves. Q. rubra seedlings had greater annual increases in height, diameter and biomass in the introduced range. Q. rubra seedlings in the introduced range were also younger;however, they had a mean area per leaf and a total leaf area per seedling that were five times greater than seedlings in the native range. Such differences in morphological traits and allocation patterns support the hypothesis that Q. rubra expresses greater shade tolerance in the introduced range, and that natural regeneration of Q. rubra is not as limited by shade as in the native range. The ability of Q. rubra seedlings to grow faster under closed canopies in Europe may explain the discrepancy in regeneration success of this species in native and introduced ranges. Future research should confirm findings of this study over a greater geographical range in native and introduced ecosystems, and examine the genetic and environmental bases of observed differences in plant traits.
基金funded by Libyan Missions Department and Cairo University
文摘Within the semi-desert landscape of northern Libya, two sub-humid escarpments occur: Al-Akhdar in the east and Nafusa (Jabal Al-Gharbi) in the west. This study compares plant communities in the two regions, which are along an elevation gradient, in terms of species composition and diversity, frequency of different Raunkiaer life forms, and reproductive phenology. The two regions differed in species composition and life-form frequency between regions and between elevation zones within each region. Patterns were associated with the lower rainfall and lower moisture-holding capacity of soils at Nafusa, resulting in more xeric conditions. Only 13% of species were shared between the two regional landscapes. Species diversity, life-form frequency, and duration of the flowering-fruiting phenophase were all affected by elevation above sea level. The duration of flowering and fruiting in spring and fall was associated with environmental conditions, although there were different thresholds in the two regions. There was both a spring and fall episode of flowering at Nafusa, but only spring flowering at Al-Akhdar. It is anticipated that there will be a gradual shift of plant communities to higher elevations and loss of certain sensitive species in response to ongoing climate change.
文摘We sampled twenty populations of the vulnera- ble endemic shrub or tree, Arbutus pavarii Pampan., at different elevations and aspects within the A1-Akhdar mountainous region of Libya. Our sampling sites were at elevations ranging from 285 to 738 m above sea level, and several different habitats: vallies (locally known as wadis), north- and south-facing slopes, and mountaintops. All individuals within each quadrat were studied. Population size and structure, and plant functional traits were assessed. None of the populations had a stable distribution of size classes. Some consisted mostly of small plants, with little or no fruit production; others consisted only of mid-sized and large plants, with high fruit production, but no juvenile recruitment. There was a significant increase in percent cover with increasing elevation; reproductive output (the number of fruits per branch and total number of fruits per individual) also generally increased with elevation. In some of these populations the lack of recruitment, and in others the failure to produce fruit, together constituted serious demographic threats. In light of these results, recommen- dations are made for conservation of this vulnerable endemic species.
基金the National Science Foundation of China (Grant Nos. 30771747 and 30640036)the Beijing Natural Science Foundation (No. 6042020)+1 种基金the research projects supported by the Hebei Education Department (No. Z2010102)the Baoding University (No. 2010Z02)
文摘The chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) of 16 Populus species (Section Leuce) and their F1 generation were detected using PCR-RFLP technique. The results show that cpDNA in the F1 generation of 22 hybrid combinations was inherited maternally, which supported the conclusions of the study of plasmid cytology. The mtDNA fragments amplified by PCR were consistent with the restriction maps in all hybrid combinations and no polymorphism was detected, indicating that the Section Leuce is highly conserved in mitochondrial gene sequences. These results provided direct evidence of maternal chloroplast inheritance in Populus tomentosa, P. bolleana, P. davidiana, P. adenopoda, P. tomentosa × P. bolleana, P. alba × P. glandulosa and P. alba × P. tomentosa.
文摘In a single step photolithography, muhi-level microfluidic device is fabricated by printing novel architectures on a film photomasks. The whole fabrication process is executed by classical PCB technology without the need to access clean room facilities. Different levels of protruding features on PCB master are produced by exposing a photomask with specifically arranged "windows and rims" architectures, followed by chemical wet etching. Poly(dimethylsiloxane)(PDMS) is then molded against the positive relief master to generate microfluidic device featured with multi-level sandbag structure and peripheral microchannels. This sandbag structure is an analog to traditional dam or weir for particle entrapment. The microstructure does not collapse when subjected to applied pressure, which is suitable for operation on elastic PDMS substrate.Typical immunocytochemcial staining assays were performed in the microdevice to demonstrate the applicability of the sandbag structure for cellular analysis. This simplified microfabrication process employs low-cost materials and minimal specialized equipment and can reproducibly produce mask lines with about 20 μm in width, which is sufficient for most microfluidic applications.
基金partially supported by grants from Diabetes Action Research and Education Foundation。
文摘Insulin resistance is a hallmark of type-2 diabetes(T2D)pathogenesis.Because skeletal muscle(SkM)is the major tissue for insulin-mediated glucose disposal,insulin resistance in SkM is considered a major risk factor for developing T2D.Thus,the identifi cation of compounds that enhance the ability of SkM to take up glucose is a promising strategy for preventing T2D.Our previous work showed that kaempferol,a fl avonol present in many foods,improves insulin sensitivity in obese mice,however,the mechanism underlying this beneficial action remains unclear.Here,we show that kaempferol directly stimulates glucose uptake and prevents lipotoxicity-impaired glucose uptake in primary human SkM.Kaempferol stimulates Akt phosphorylation in a time-dependent manner in human SkM cells.The effect of kaempferol on glucose uptake was blunted by inhibition of glucose transporter 4,phosphoinositide 3-kinase(PI3K),or AMPK.In addition,kaempferol induced AMPK phosphorylation,and inhibition of AMPK prevented kaempferol-stimulated Akt phosphorylation.In vivo,kaempferol administration induced rapid glucose disposal accompanied with increased Akt and AMPK phosphorylation in SkM tissue of the mice.Taken together,these fi ndings suggest that kaempferol stimulates glucose uptake in SkM via an AMPK/Akt dependent mechanism,and it may be a viable therapeutic agent for insulin resistance.