Dalian Institute of Chemical Physics(DICP) is a comprehensive chemical engineering research institute with strong international reputation, which has made significant contributions to national economic construction, n...Dalian Institute of Chemical Physics(DICP) is a comprehensive chemical engineering research institute with strong international reputation, which has made significant contributions to national economic construction, national security and the progress of science and technology(S&T).展开更多
Methane, an abundant one-carbon(C_(1)) resource, is extensively used in the industrial production of vital fuels and value-added chemicals. However, current industrial methane conversion technologies are energy-and ca...Methane, an abundant one-carbon(C_(1)) resource, is extensively used in the industrial production of vital fuels and value-added chemicals. However, current industrial methane conversion technologies are energy-and carbon-intensive, mainly due to the high activation energy required to break the inert C–H bond, low selectivity, and problematic side reactions, including CO_(2)emissions and coke deposition. Electrochemical conversion of methane(ECM) using intermittent renewable energy offers an attractive solution, due to its modular reactor design and operational flexibility across a broad spectrum of temperatures and pressures. This review emphasizes conversion pathways of methane in various reaction systems, highlighting the significance and advantages of ECM in facilitating a sustainable artificial carbon cycle. This work provides a comprehensive overview of conventional methane activation mechanisms and delineates the complete pathways of methane conversion in electrolysis contexts. Based on surface/interface chemistry, this work systematically analyzes proposed reaction pathways and corresponding strategies to enhance ECM efficiency towards various target products, including syngas, hydrocarbons, oxygenates, and advanced carbon materials. The discussion also encompasses opportunities and challenges for the ECM process, including insights into ECM pathways, rational electrocatalyst design, establishment of benchmarking protocols, electrolyte engineering, enhancement of CH4conversion rates, and minimization of CO_(2)emission.展开更多
Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,par...Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,particularly the presence of aggressive Cl^(-),has been proven to be prone to parasitic chloride ion oxidation and corrosion reactions,thus restricting seawater electrolyzer lifetime.Herein,hierarchical structure(Ni,Fe)O(OH)@NiCoS nanorod arrays(NAs)catalysts with heterointerfaces and localized oxygen vacancies were synthesized at nickel foam substrates via the combination of hydrothermal and annealing methods to boost seawater dissociation.The hiera rchical nanostructure of NiCoS NAs enhanced electrode charge transfer rate and active surface area to accelerate oxygen evolution reaction(OER)and generated sulfate gradient layers to repulsive aggressive Cl^(-).The fabricated heterostructure and vacancies of(Ni,Fe)O(OH)tuned catalyst electronic structure into an electrophilic state to enhance the binding affinity of hydroxyl intermediates and facilitate the structural transformation into amorphousγ-NiFeOOH for promoting OER.Furthermore,through operando electrochemistry techniques,we found that theγ-NiFeOOH possessing an unsaturated coordination environment and lattice-oxygen-participated OER mechanism can minimize electrode Cl^(-)corrosion enabled by stabilizing the adsorption of OH*intermediates,making it one of the best OER catalysts in the seawater medium reported to date.Consequently,these catalysts can deliver current densities of 100 and 500 mA cm-2for boosting OER at minimal overpotentials of 245and 316 mV,respectively,and thus prevent chloride ion oxidation simultaneously.Impressively,a highly stable anion exchange membrane(AEM)seawater electrolyzer based on the non-noble metal heterostructure electrodes reached a record low degradation rate under 100μV h-1at constant industrial current densities of 400 and 600 mA cm-2over 300 h,which exhibits a promising future for the nonprecious and stable AEMWE in the direct seawater electrolysis industry.展开更多
Lignocellulosic biomass is the largest renewable hydrocarbon resource on earth.Converting cellulose,one of the major components of lignocellulose,powered by solar energy is a promising way of providing lowcarbon-footp...Lignocellulosic biomass is the largest renewable hydrocarbon resource on earth.Converting cellulose,one of the major components of lignocellulose,powered by solar energy is a promising way of providing lowcarbon-footprint energy chemicals such as H_(2),HCOOH,CO,and transportation fuels.State-of-the-art biorefineries target the full use of biomass feedstocks as they have a maximum collection radius of 75-100 km,requesting efficient and selective photocatalysts that significantly influence the outcome of photocatalytic biorefineries.Well-performed photocatalysts can harvest a broad solar spectrum and are active in breaking the chemical bonds of cellulose,decreasing the capital investments of biorefineries.Besides,photocatalysts should control the selectivity of cellulose conversion,originating target products to level down separation costs.Charge separation in photocatalysts and interfacial charge transfer between photocatalysts and cellulose affect the activity and selectivity of cellulose refineries to H2 and carbonaceous chemicals.To account for the challenges above,this review summarizes photocatalysts for the refineries of cellulose and downstream platform molecules based on the types of products,with the structure features of different types of photocatalysts discussed in relation to the targets of either improving the activity or product selectivity.In addition,this review also sheds light on the methods for designing and regulating photocatalyst structures to facilitate photocatalytic refineries of cellulose and platform molecules,meanwhile summarizing proposed future research challenges and opportunities for designing efficient photocatalysts.展开更多
Selective hydrogenation of furfural to furfuryl alcohol is a great challenge in the hydrogenation field due to thermodynamic preference for hydrogenation of C=C over C=O.Herein,a novel Al_(2)O_(3)/C-u hybrid catalyst,...Selective hydrogenation of furfural to furfuryl alcohol is a great challenge in the hydrogenation field due to thermodynamic preference for hydrogenation of C=C over C=O.Herein,a novel Al_(2)O_(3)/C-u hybrid catalyst,composed of N-modified dendritic carbon networks supporting Al_(2)O_(3)nanoparticles,was successfully prepared via carbonizing the freeze-dried gel from spontaneous cross-linking of alginate,Al3+and urea.The obtained carbon-supported Al_(2)O_(3)hybrid catalyst has a high ratio (31%) of Al species in pentahedral-coordinated state.The introduction of urea enhances the surface N content,the ratio of pyrrolic N,and specific surface area of catalyst,leading to improved adsorption capacity of C=O and the accessibility of active sites.In the furfural hydrogenation reaction with isopropyl alcohol as hydrogen donor,Al_(2)O_(3)/C-u catalyst achieved a 90%conversion of furfural with 98.0% selectivity to furfuryl alcohol,outperforming that of commercial γ-Al_(2)O_(3).Moreover,Al_(2)O_(3)/C-u demonstrates excellent catalytic stability in the recycling tests attributed to the synergistic effect of abundant weak Lewis acid sites and the anchoring effect of the carbon network on Al_(2)O_(3)nanoparticles.This work provides an innovative and facile strategy for fabrication of carbon-supported Al_(2)O_(3)hybrid catalysts with rich AlVspecies,serving as a high selective hydrogenation catalyst through MPV reaction route.展开更多
Zeolite nanosheets with a short b-axis thickness are highly desirable in lots of catalytic reactions due to their reduced diffusion resistance. Nevertheless, conventional synthesis methods usually require expensive st...Zeolite nanosheets with a short b-axis thickness are highly desirable in lots of catalytic reactions due to their reduced diffusion resistance. Nevertheless, conventional synthesis methods usually require expensive structure-directing agents(SDAs), pricey raw materials, and eco-unfriendly fluorine-containing additives. Here, we contributed a cost-effective and fluoride-free synthesis method for synthesizing high-quality MFI zeolite nanosheets through a Silicalite-1(Sil-1) seed suspension and urea cooperative strategy, only with inexpensive colloidal silica as the Si source. Our approach was effective for synthesizing both Sil-1 and aluminum-containing ZSM-5 nanosheets. By optimizing key synthesis parameters,including seed aging time, seed quantity, and urea concentration, we achieved precise control over the crystal face aspect ratio and b-axis thickness. We also revealed a non-classical oriented nanosheet growth mechanism, where Sil-1 seeds induced the formation of quasi-ordered precursor particles, and the(010)crystal planes of these particles facilitated urea adsorption, thereby promoting c-axis-oriented growth.The obtained ZSM-5 nanosheets exhibited exceptional catalytic performance in the benzene alkylation with ethanol, maintaining stability for over 500 h, which is 5 times longer than traditional ZSM-5 catalysts. Furthermore, large-scale production of ZSM-5 nanosheets was successfully carried out in a 3 L highpressure autoclave, yielding samples consistent with those from laboratory-scale synthesis. This work marks a significant step forward in the sustainable and efficient production of MFI nanosheets using inexpensive and environmentally friendly raw materials, offering the broad applicability in catalysis.展开更多
The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly unders...The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance.展开更多
In response to the awareness of limited fossil resources and environmental concerns,catalytic conversion of renewable lignocellulose biomass to value-added chemicals and fuels is of great significance and attractive f...In response to the awareness of limited fossil resources and environmental concerns,catalytic conversion of renewable lignocellulose biomass to value-added chemicals and fuels is of great significance and attractive for sustainable chemistry.Division of Biomass Conversion and Bio-Energy attached to Dalian National Laboratory for Clean Energy has devoted themselves to valorization of lignocellulose biomass since launched in 2011.Our research interests focus on breeding of biomass resources(inulin and microalgae),exploration of catalytic and biological technologies,and production of energy chemicals and fuels.Although lignocellulose biomass is renewable and abundant,the way of utilization should be reasonable according to its structural characteristics in view of efficiency and economy.In this review,to celebrate the DICP's 70 th anniversary,we will highlight the major fundamental advances in DICP about the conversion of lignocellulose to value-added chemicals and liquid fuels.Particular attention will be paid to the transformation of cellulose and its derivatives to glycols,acids and nitrogen-containing chemicals,hemicellulose-derived platform molecule furfural to jet fuels and lignin to aromatics using catalytic technologies.展开更多
The effort on electrochemical reduction of COto useful chemicals using the renewable energy to drive the process is growing fast recently. In this review, we introduce the recent progresses on the electrochemical redu...The effort on electrochemical reduction of COto useful chemicals using the renewable energy to drive the process is growing fast recently. In this review, we introduce the recent progresses on the electrochemical reduction of COin solid oxide electrolysis cells(SOECs). At high temperature, only CO is produced with high current densities and Faradic efficiency while the reactor is complicated and a better sealing technique is urgently needed. The typical electrolytes such as zirconia-based oxides, ceria-based oxides and lanthanum gallates-based oxides, anodes and cathodes are introduced in this review, and the cathode materials, such as conventional metal–ceramics(cermets), mixed ionic and electronic conductors(MIECs) are discussed in detail. In the future, to gain more value-added products, the electrolyte, cathode and anode materials should be developed to allow SOECs to be operated at temperature range of 573–873 K. At those temperatures, SOECs may combine the advantages of the low temperature system and the high temperature system to produce various products with high current densities.展开更多
Electrochemical CO2 reduction to chemicals or fuels presents one of the most promising strategies for managing the global carbon balance, which yet poses a significant challenge due to lack of efficient and durable el...Electrochemical CO2 reduction to chemicals or fuels presents one of the most promising strategies for managing the global carbon balance, which yet poses a significant challenge due to lack of efficient and durable electrocatalyst as well as the understanding of the CO2 reduction reaction(CO2RR) mechanism.Benefiting from the large surface area, high electrical conductivity, and tunable structure, carbon-based metal-free materials(CMs) have been extensively studied as cost-effective electrocatalysts for CO2RR.The development of CMs with low cost, high activity and durability for CO2RR has been considered as one of the most active and competitive directions in electrochemistry and material science.In this review article,some up-to-date strategies in improving the CO2RR performance on CMs are summarized.Specifically, the approaches to optimize the adsorption of CO2RR intermediates, such as tuning the physical and electronic structure are introduced, which can enhance the electrocatalytic activity of CMs effectively.Finally, some design strategies are proposed to prepare CMs with high activity and selectivity for CO2RR.展开更多
The development of catalytic materials for the recycling CO_(2) through a myriad of available processes is an attractive field,especially given the current climate change.While there is increasing publication in this ...The development of catalytic materials for the recycling CO_(2) through a myriad of available processes is an attractive field,especially given the current climate change.While there is increasing publication in this field,the reported catalysts rarely deviate from the traditionally supported metal nanoparticle morphology,with the most simplistic method of enhancement being the addition of more metals to an already complex composition.Encapsulated catalysts,especially yolk@shell catalysts with hollow voids,offer answers to the most prominent issues faced by this field,coking and sintering,and further potential for more advanced phenomena,for example,the confinement effect,to promote selectivity or offer greater protection against coking and sintering.This work serves to demonstrate the current position of catalyst development in the fields of thermal CO_(2) reforming and hydrogenation,summarizing the most recent work available and most common metals used for these reactions,and how yolk@shell catalysts can offer superior performance and survivability in thermal CO_(2) reforming and hydrogenation to the more traditional structure.Furthermore,this work will briefly demonstrate the bespoke nature and highly variable yolk@shell structure.Moreover,this review aims to illuminate the spatial confinement effect and how it enhances yolk@shell structured nanoreactors is presented.展开更多
In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a pro...In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a promising feedstock.This review focuses on the state-of-the-art catalytic transformation of lignocellulosic biomass into value-added chemicals and fuels.Following a brief introduction on the structure,major resources and pretreatment methods of lignocellulosic biomass,the catalytic conversion of three main components,i.e.,cellulose,hemicellulose and lignin,into various compounds are comprehensively discussed.Either in separate steps or in one-pot,cellulose and hemicellulose are hydrolyzed into sugars and upgraded into oxygen-containing chemicals such as 5-HMF,furfural,polyols,and organic acids,or even nitrogen-containing chemicals such as amino acids.On the other hand,lignin is first depolymerized into phenols,catechols,guaiacols,aldehydes and ketones,and then further transformed into hydrocarbon fuels,bioplastic precursors and bioactive compounds.The review then introduces the transformations of whole biomass via catalytic gasification,catalytic pyrolysis,as well as emerging strategies.Finally,opportunities,challenges and prospective of woody biomass valorization are highlighted.展开更多
The continuous wavelength chemical oxygen-iodine laser can be turned into pulse operation mode in order to obtain high energy and high pulse power. We propose an approach to produce iodine atoms instantaneously by pul...The continuous wavelength chemical oxygen-iodine laser can be turned into pulse operation mode in order to obtain high energy and high pulse power. We propose an approach to produce iodine atoms instantaneously by pulsed gas discharge with the assistance of spark pre-ionization to achieve the pulsed goal. The influence of spark pre-ionization on discharge homogeneity is discussed. Voltage-current characteristics are shown and discussed in existence of the pre-ionization capacitor and peaking capacitor. The spark pre-ionization and peaking capacitor are very helpful in obtaining a stable and homogeneous discharge. The lasing is achieved at the total pressure of 2.2-2.9 kPa and single pulse energy is up to 180 mJ, the corresponding specific output energy is 1.0 3/L.展开更多
The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse ga...The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse gas emissions of this chemical and energy storage process.We report here an in-situ electrochemical activation method to prepare Fe2O3-CNT(iron oxide on carbon nanotubes)electrocatalysts for the direct ammonia synthesis from N2 and H2O.The in-situ electrochemical activation leads to a large increase of the ammonia formation rate and Faradaic efficiency which reach the surprising high values of 41.6μg mgcat^−1 h^−1 and 17%,respectively,for an in-situ activation of 3 h,among the highest values reported so far for non-precious metal catalysts that use a continuous-flow polymer-electrolytemembrane cell and gas-phase operations for the ammonia synthesis hemicell.The electrocatalyst was stable at least 12 h at the working conditions.Tests by switching N2 to Ar evidence that ammonia was formed from the gas-phase nitrogen.The analysis of the changes of reactivity and of the electrocatalyst characteristics as a function of the time of activation indicates a linear relationship between the ammonia formation rate and a specific XPS(X-ray-photoelectron spectroscopy)oxygen signal related to O2−in iron-oxide species.This results together with characterization data by TEM and XRD suggest that the iron species active in the direct and selective synthesis of ammonia is a maghemite-type iron oxide,and this transformation from the initial hematite is responsible for the in-situ enhancement of 3-4 times of the TOF(turnover frequency)and NH3 Faradaic efficiency.This transformation is likely related to the stabilization of the maghemite species at CNT defect sites,although for longer times of preactivation a sintering occurs with a loss of performances.展开更多
By utilizing hard template method to adjust the mesopore length, and alkali activation to generate micro pores, two hierarchical porous carbons (HPCs) were prepared. With controlling of their mesopore length and the a...By utilizing hard template method to adjust the mesopore length, and alkali activation to generate micro pores, two hierarchical porous carbons (HPCs) were prepared. With controlling of their mesopore length and the activation conditions, the complex system composed by HPCs and electrolyte was simplified and the effect of mesopore length on the performance of HPCs as electrodes in supercapacitors was investigated. It is found that with the mesopore length getting smaller, the ordered area gets smaller and the aggregation occurs, which is caused by the high surface energy of small grains. HPC with long pores (HPCL) exhibits a donut-like morphology with well-defined ordered mesopores and a regular orientation while in HPC with short pores (HPCS), short mesopores are only orderly distributed in small regions. Longer ordered channels form unobstructed ways for ions transport in the particles while shorter channels, only orderly distributed in small areas, results in blocked paths, which may hinder the electrolyte ions transport. Due to the unobstructed structure, HPCL exhibits good rate capability with a capacitance retention rate over 86% as current density increasing from 50 mA/g to 1000 mA/g. The specific capacitance of HPCL derived from the cyclic voltammetry test at 10 mV/s is up to 201.72 F/g, while the specific capacitance of HPCS is only 193.65 F/g. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-acti...For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-active materials have been considered as one of the promising technologies for achieving lowcost and high-performance. Herein, we present a critical overview of the progress on the OFBs, including the design principles of key components(redox-active molecules, membranes, and electrodes) and the latest achievement in both aqueous and nonaqueous systems. Finally, future directions in explorations of the high-performance OFB for electrochemical energy storage are also highlighted.展开更多
Continuous-wave chemical oxygen-iodine lasers (COILs) can be operated in a pulsed operation mode to obtain a higher peak power.The key point is to obtain a uniform and stable glow discharge in the mixture of singlet d...Continuous-wave chemical oxygen-iodine lasers (COILs) can be operated in a pulsed operation mode to obtain a higher peak power.The key point is to obtain a uniform and stable glow discharge in the mixture of singlet delta oxygen and iodide.We propose using an electrode system with the assistance of surface sliding pre-ionization to solve the problem of the stable glow discharge with a large aperture.The pre-ionization unit is symmetrically fixed on the plane of the cathode surface.A uniform and stable glow discharge is obtained in a mixture of iodide (such as CH3I) and nitrogen at the specific deposition energy of 4.5 J/L,pressure of 1.99-3.32 kPa,aperture size of 11 cm × 10cm.The electrode system is applied in a pulsed COIL.Laser energy up to 4.4J is obtained and the specific energy output is 2 J/L.展开更多
CO_(2)electroreduction reaction(CO_(2)RR),combined with solid oxide electrolysis cells(SOECs),is a feasible technology for the storage of renewable electric energy,while its development is limited by the catalytic act...CO_(2)electroreduction reaction(CO_(2)RR),combined with solid oxide electrolysis cells(SOECs),is a feasible technology for the storage of renewable electric energy,while its development is limited by the catalytic activity and stability on cathodes.Here,a novel garnet oxide(Gd_(3)Fe_(5)O_(12))cathode is designed,where the garnet oxide is converted to perovskite oxide and iron via in situ electrochemical phase transition during CO_(2)electroreduction,resulting in high activity with Faradaic efficiency close to 100%and great stability over 1000 h galvanostatic test.A variety of experimental characterizations and density functional theory calculations indicate that in situ exsolved Fe clusters can effectively enhance the adsorption energies of intermediates and lowering the CO_(2)dissociation barriers.Microkinetic modelling confirms that CO_(2)RR goes through a dissociative adsorption mechanism and the electronic transfer for CO_(2)dissociation is the rate-determining step.展开更多
Electrochemical capacitors(ECs)with unique merits of fast charge/discharge rate and long cyclability are one of the representative electrochemical energy storage systems,possessing wide applications in power electroni...Electrochemical capacitors(ECs)with unique merits of fast charge/discharge rate and long cyclability are one of the representative electrochemical energy storage systems,possessing wide applications in power electronics and automotive transportation,etc.[1,2].Furthermore.展开更多
Energy storage is pivotal for the continuous utilization of solar energy suffering from the intermittency issue. Herein, we demonstrate a solar rechargeable flow cell(SRFC) based on photoelectrochemical regeneration...Energy storage is pivotal for the continuous utilization of solar energy suffering from the intermittency issue. Herein, we demonstrate a solar rechargeable flow cell(SRFC) based on photoelectrochemical regeneration of vanadium redox species for in-situ solar energy harvest and storage. In this device, TiO_2 and MWCNT/acetylene black(MWCNT/AB) composite are served as the photoanode and the counter electrode,respectively, with all vanadium redox couples, VO_2~+/VO^(2+)and VO^(2+)/V^(3+), as solar energy storage media.Benefitting from solar energy, the cell can be photocharged under a bias as low as 0.1 V, which is much lower than the discharge voltage of ~0.5 V. Photocharged under the optimized condition, the cell delivers a discharge energy of 23.0 mWh/L with 67.4% input electric energy savings. This prototype work may inspire the rational design for cost-effective solar energy storage devices.展开更多
文摘Dalian Institute of Chemical Physics(DICP) is a comprehensive chemical engineering research institute with strong international reputation, which has made significant contributions to national economic construction, national security and the progress of science and technology(S&T).
基金National Key R&D Program of China (2023YFA1508001 and 2023YFA1508002)National Natural Science Foundation of China (22272120 and U2202251)+1 种基金Hainan Province Science and Technology Special Fund(ZDYF2023SHFZ120)Research Foundation of Marine Science and Technology Collaborative Innovation Center of Hainan University (XTCX2022HYB01)。
文摘Methane, an abundant one-carbon(C_(1)) resource, is extensively used in the industrial production of vital fuels and value-added chemicals. However, current industrial methane conversion technologies are energy-and carbon-intensive, mainly due to the high activation energy required to break the inert C–H bond, low selectivity, and problematic side reactions, including CO_(2)emissions and coke deposition. Electrochemical conversion of methane(ECM) using intermittent renewable energy offers an attractive solution, due to its modular reactor design and operational flexibility across a broad spectrum of temperatures and pressures. This review emphasizes conversion pathways of methane in various reaction systems, highlighting the significance and advantages of ECM in facilitating a sustainable artificial carbon cycle. This work provides a comprehensive overview of conventional methane activation mechanisms and delineates the complete pathways of methane conversion in electrolysis contexts. Based on surface/interface chemistry, this work systematically analyzes proposed reaction pathways and corresponding strategies to enhance ECM efficiency towards various target products, including syngas, hydrocarbons, oxygenates, and advanced carbon materials. The discussion also encompasses opportunities and challenges for the ECM process, including insights into ECM pathways, rational electrocatalyst design, establishment of benchmarking protocols, electrolyte engineering, enhancement of CH4conversion rates, and minimization of CO_(2)emission.
基金supported by the National Key Research and Development Program of China(2022YFB4002100)the Key Program of the National Natural Science Foundation of China(22090032,22090030)。
文摘Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,particularly the presence of aggressive Cl^(-),has been proven to be prone to parasitic chloride ion oxidation and corrosion reactions,thus restricting seawater electrolyzer lifetime.Herein,hierarchical structure(Ni,Fe)O(OH)@NiCoS nanorod arrays(NAs)catalysts with heterointerfaces and localized oxygen vacancies were synthesized at nickel foam substrates via the combination of hydrothermal and annealing methods to boost seawater dissociation.The hiera rchical nanostructure of NiCoS NAs enhanced electrode charge transfer rate and active surface area to accelerate oxygen evolution reaction(OER)and generated sulfate gradient layers to repulsive aggressive Cl^(-).The fabricated heterostructure and vacancies of(Ni,Fe)O(OH)tuned catalyst electronic structure into an electrophilic state to enhance the binding affinity of hydroxyl intermediates and facilitate the structural transformation into amorphousγ-NiFeOOH for promoting OER.Furthermore,through operando electrochemistry techniques,we found that theγ-NiFeOOH possessing an unsaturated coordination environment and lattice-oxygen-participated OER mechanism can minimize electrode Cl^(-)corrosion enabled by stabilizing the adsorption of OH*intermediates,making it one of the best OER catalysts in the seawater medium reported to date.Consequently,these catalysts can deliver current densities of 100 and 500 mA cm-2for boosting OER at minimal overpotentials of 245and 316 mV,respectively,and thus prevent chloride ion oxidation simultaneously.Impressively,a highly stable anion exchange membrane(AEM)seawater electrolyzer based on the non-noble metal heterostructure electrodes reached a record low degradation rate under 100μV h-1at constant industrial current densities of 400 and 600 mA cm-2over 300 h,which exhibits a promising future for the nonprecious and stable AEMWE in the direct seawater electrolysis industry.
基金supported by the National Natural Science Foundation of China(22172157,22025206)the Dalian Innovation Support Plan for High Level Talents(2022RG13),DICP(DICP I202116)+1 种基金the Youth Innovation Promotion Association(YIPA)of the Chinese Academy of Sciences(2023192)the Fundamental Research Funds for the Central Universities(20720220008)。
文摘Lignocellulosic biomass is the largest renewable hydrocarbon resource on earth.Converting cellulose,one of the major components of lignocellulose,powered by solar energy is a promising way of providing lowcarbon-footprint energy chemicals such as H_(2),HCOOH,CO,and transportation fuels.State-of-the-art biorefineries target the full use of biomass feedstocks as they have a maximum collection radius of 75-100 km,requesting efficient and selective photocatalysts that significantly influence the outcome of photocatalytic biorefineries.Well-performed photocatalysts can harvest a broad solar spectrum and are active in breaking the chemical bonds of cellulose,decreasing the capital investments of biorefineries.Besides,photocatalysts should control the selectivity of cellulose conversion,originating target products to level down separation costs.Charge separation in photocatalysts and interfacial charge transfer between photocatalysts and cellulose affect the activity and selectivity of cellulose refineries to H2 and carbonaceous chemicals.To account for the challenges above,this review summarizes photocatalysts for the refineries of cellulose and downstream platform molecules based on the types of products,with the structure features of different types of photocatalysts discussed in relation to the targets of either improving the activity or product selectivity.In addition,this review also sheds light on the methods for designing and regulating photocatalyst structures to facilitate photocatalytic refineries of cellulose and platform molecules,meanwhile summarizing proposed future research challenges and opportunities for designing efficient photocatalysts.
基金China Postdoctoral Science Foundation (2023M733451)Dalian Innovation Team in Key Areas(2020RT06)Engineering Research Center for Key Aromatic Compounds and LiaoNing Key Laboratory,Liaoning Provincial Natural Science Foundation (Doctoral Research Start-up Fund 2024-BSBA-37)。
文摘Selective hydrogenation of furfural to furfuryl alcohol is a great challenge in the hydrogenation field due to thermodynamic preference for hydrogenation of C=C over C=O.Herein,a novel Al_(2)O_(3)/C-u hybrid catalyst,composed of N-modified dendritic carbon networks supporting Al_(2)O_(3)nanoparticles,was successfully prepared via carbonizing the freeze-dried gel from spontaneous cross-linking of alginate,Al3+and urea.The obtained carbon-supported Al_(2)O_(3)hybrid catalyst has a high ratio (31%) of Al species in pentahedral-coordinated state.The introduction of urea enhances the surface N content,the ratio of pyrrolic N,and specific surface area of catalyst,leading to improved adsorption capacity of C=O and the accessibility of active sites.In the furfural hydrogenation reaction with isopropyl alcohol as hydrogen donor,Al_(2)O_(3)/C-u catalyst achieved a 90%conversion of furfural with 98.0% selectivity to furfuryl alcohol,outperforming that of commercial γ-Al_(2)O_(3).Moreover,Al_(2)O_(3)/C-u demonstrates excellent catalytic stability in the recycling tests attributed to the synergistic effect of abundant weak Lewis acid sites and the anchoring effect of the carbon network on Al_(2)O_(3)nanoparticles.This work provides an innovative and facile strategy for fabrication of carbon-supported Al_(2)O_(3)hybrid catalysts with rich AlVspecies,serving as a high selective hydrogenation catalyst through MPV reaction route.
基金Joint Project of Dalian University of Technology-Dalian Institute of Chemical Physics (HX20230236)。
文摘Zeolite nanosheets with a short b-axis thickness are highly desirable in lots of catalytic reactions due to their reduced diffusion resistance. Nevertheless, conventional synthesis methods usually require expensive structure-directing agents(SDAs), pricey raw materials, and eco-unfriendly fluorine-containing additives. Here, we contributed a cost-effective and fluoride-free synthesis method for synthesizing high-quality MFI zeolite nanosheets through a Silicalite-1(Sil-1) seed suspension and urea cooperative strategy, only with inexpensive colloidal silica as the Si source. Our approach was effective for synthesizing both Sil-1 and aluminum-containing ZSM-5 nanosheets. By optimizing key synthesis parameters,including seed aging time, seed quantity, and urea concentration, we achieved precise control over the crystal face aspect ratio and b-axis thickness. We also revealed a non-classical oriented nanosheet growth mechanism, where Sil-1 seeds induced the formation of quasi-ordered precursor particles, and the(010)crystal planes of these particles facilitated urea adsorption, thereby promoting c-axis-oriented growth.The obtained ZSM-5 nanosheets exhibited exceptional catalytic performance in the benzene alkylation with ethanol, maintaining stability for over 500 h, which is 5 times longer than traditional ZSM-5 catalysts. Furthermore, large-scale production of ZSM-5 nanosheets was successfully carried out in a 3 L highpressure autoclave, yielding samples consistent with those from laboratory-scale synthesis. This work marks a significant step forward in the sustainable and efficient production of MFI nanosheets using inexpensive and environmentally friendly raw materials, offering the broad applicability in catalysis.
基金financially National Key R&D Program of China(No.2022YFA1504800)National Natural Science Foundation of China(Grant No.22325405,22372160,22321002)+1 种基金Liaoning Revitalization Talents Program(XLYC1807207)DICP I202104。
文摘The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance.
基金supported by the National Natural Science Foundation of China(Projects 21790331,21603218,21703236 and 21872138)the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB17020300 and XDA21030400)+1 种基金the Youth Innovation Promotion Association,CAS(2018219)DICP ZZBS201811
文摘In response to the awareness of limited fossil resources and environmental concerns,catalytic conversion of renewable lignocellulose biomass to value-added chemicals and fuels is of great significance and attractive for sustainable chemistry.Division of Biomass Conversion and Bio-Energy attached to Dalian National Laboratory for Clean Energy has devoted themselves to valorization of lignocellulose biomass since launched in 2011.Our research interests focus on breeding of biomass resources(inulin and microalgae),exploration of catalytic and biological technologies,and production of energy chemicals and fuels.Although lignocellulose biomass is renewable and abundant,the way of utilization should be reasonable according to its structural characteristics in view of efficiency and economy.In this review,to celebrate the DICP's 70 th anniversary,we will highlight the major fundamental advances in DICP about the conversion of lignocellulose to value-added chemicals and liquid fuels.Particular attention will be paid to the transformation of cellulose and its derivatives to glycols,acids and nitrogen-containing chemicals,hemicellulose-derived platform molecule furfural to jet fuels and lignin to aromatics using catalytic technologies.
基金the financial support from the National Natural Science Foundation of China(91545202)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB17020400)
文摘The effort on electrochemical reduction of COto useful chemicals using the renewable energy to drive the process is growing fast recently. In this review, we introduce the recent progresses on the electrochemical reduction of COin solid oxide electrolysis cells(SOECs). At high temperature, only CO is produced with high current densities and Faradic efficiency while the reactor is complicated and a better sealing technique is urgently needed. The typical electrolytes such as zirconia-based oxides, ceria-based oxides and lanthanum gallates-based oxides, anodes and cathodes are introduced in this review, and the cathode materials, such as conventional metal–ceramics(cermets), mixed ionic and electronic conductors(MIECs) are discussed in detail. In the future, to gain more value-added products, the electrolyte, cathode and anode materials should be developed to allow SOECs to be operated at temperature range of 573–873 K. At those temperatures, SOECs may combine the advantages of the low temperature system and the high temperature system to produce various products with high current densities.
基金supported by the National Key R&D Program of China (2016YFB0600902)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17000000)+2 种基金Dalian National Laboratory for Clean Energy (DNL180401)the Youth Innovation Promotion Association CASthe Singapore Ministry of Education Academic Research Fund (AcRF) Tier 1: RG9/17, RG115/17, RG115/18 and Tier 2: MOE2016-T2-2-004
文摘Electrochemical CO2 reduction to chemicals or fuels presents one of the most promising strategies for managing the global carbon balance, which yet poses a significant challenge due to lack of efficient and durable electrocatalyst as well as the understanding of the CO2 reduction reaction(CO2RR) mechanism.Benefiting from the large surface area, high electrical conductivity, and tunable structure, carbon-based metal-free materials(CMs) have been extensively studied as cost-effective electrocatalysts for CO2RR.The development of CMs with low cost, high activity and durability for CO2RR has been considered as one of the most active and competitive directions in electrochemistry and material science.In this review article,some up-to-date strategies in improving the CO2RR performance on CMs are summarized.Specifically, the approaches to optimize the adsorption of CO2RR intermediates, such as tuning the physical and electronic structure are introduced, which can enhance the electrocatalytic activity of CMs effectively.Finally, some design strategies are proposed to prepare CMs with high activity and selectivity for CO2RR.
基金Financial support was provided by the Chinese Academy of Sciences–The World Academy of Sciences(CAS-TWAS)president fellowship。
文摘The development of catalytic materials for the recycling CO_(2) through a myriad of available processes is an attractive field,especially given the current climate change.While there is increasing publication in this field,the reported catalysts rarely deviate from the traditionally supported metal nanoparticle morphology,with the most simplistic method of enhancement being the addition of more metals to an already complex composition.Encapsulated catalysts,especially yolk@shell catalysts with hollow voids,offer answers to the most prominent issues faced by this field,coking and sintering,and further potential for more advanced phenomena,for example,the confinement effect,to promote selectivity or offer greater protection against coking and sintering.This work serves to demonstrate the current position of catalyst development in the fields of thermal CO_(2) reforming and hydrogenation,summarizing the most recent work available and most common metals used for these reactions,and how yolk@shell catalysts can offer superior performance and survivability in thermal CO_(2) reforming and hydrogenation to the more traditional structure.Furthermore,this work will briefly demonstrate the bespoke nature and highly variable yolk@shell structure.Moreover,this review aims to illuminate the spatial confinement effect and how it enhances yolk@shell structured nanoreactors is presented.
文摘In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a promising feedstock.This review focuses on the state-of-the-art catalytic transformation of lignocellulosic biomass into value-added chemicals and fuels.Following a brief introduction on the structure,major resources and pretreatment methods of lignocellulosic biomass,the catalytic conversion of three main components,i.e.,cellulose,hemicellulose and lignin,into various compounds are comprehensively discussed.Either in separate steps or in one-pot,cellulose and hemicellulose are hydrolyzed into sugars and upgraded into oxygen-containing chemicals such as 5-HMF,furfural,polyols,and organic acids,or even nitrogen-containing chemicals such as amino acids.On the other hand,lignin is first depolymerized into phenols,catechols,guaiacols,aldehydes and ketones,and then further transformed into hydrocarbon fuels,bioplastic precursors and bioactive compounds.The review then introduces the transformations of whole biomass via catalytic gasification,catalytic pyrolysis,as well as emerging strategies.Finally,opportunities,challenges and prospective of woody biomass valorization are highlighted.
文摘The continuous wavelength chemical oxygen-iodine laser can be turned into pulse operation mode in order to obtain high energy and high pulse power. We propose an approach to produce iodine atoms instantaneously by pulsed gas discharge with the assistance of spark pre-ionization to achieve the pulsed goal. The influence of spark pre-ionization on discharge homogeneity is discussed. Voltage-current characteristics are shown and discussed in existence of the pre-ionization capacitor and peaking capacitor. The spark pre-ionization and peaking capacitor are very helpful in obtaining a stable and homogeneous discharge. The lasing is achieved at the total pressure of 2.2-2.9 kPa and single pulse energy is up to 180 mJ, the corresponding specific output energy is 1.0 3/L.
基金the frame of ERC Synergy SCOPE(project 810182)PRIN 2015 SMARTNESS project nr.2015K7FZLH projects which are gratefully acknowledgeda SINCHEM Grant.SINCHEM is a Joint Doctorate program selected under the Erasmus Mundus Action 1 Programme(FPA 2013-0037)。
文摘The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse gas emissions of this chemical and energy storage process.We report here an in-situ electrochemical activation method to prepare Fe2O3-CNT(iron oxide on carbon nanotubes)electrocatalysts for the direct ammonia synthesis from N2 and H2O.The in-situ electrochemical activation leads to a large increase of the ammonia formation rate and Faradaic efficiency which reach the surprising high values of 41.6μg mgcat^−1 h^−1 and 17%,respectively,for an in-situ activation of 3 h,among the highest values reported so far for non-precious metal catalysts that use a continuous-flow polymer-electrolytemembrane cell and gas-phase operations for the ammonia synthesis hemicell.The electrocatalyst was stable at least 12 h at the working conditions.Tests by switching N2 to Ar evidence that ammonia was formed from the gas-phase nitrogen.The analysis of the changes of reactivity and of the electrocatalyst characteristics as a function of the time of activation indicates a linear relationship between the ammonia formation rate and a specific XPS(X-ray-photoelectron spectroscopy)oxygen signal related to O2−in iron-oxide species.This results together with characterization data by TEM and XRD suggest that the iron species active in the direct and selective synthesis of ammonia is a maghemite-type iron oxide,and this transformation from the initial hematite is responsible for the in-situ enhancement of 3-4 times of the TOF(turnover frequency)and NH3 Faradaic efficiency.This transformation is likely related to the stabilization of the maghemite species at CNT defect sites,although for longer times of preactivation a sintering occurs with a loss of performances.
基金financial support from the Natural Science Foundation of China(no.51177156/E0712)
文摘By utilizing hard template method to adjust the mesopore length, and alkali activation to generate micro pores, two hierarchical porous carbons (HPCs) were prepared. With controlling of their mesopore length and the activation conditions, the complex system composed by HPCs and electrolyte was simplified and the effect of mesopore length on the performance of HPCs as electrodes in supercapacitors was investigated. It is found that with the mesopore length getting smaller, the ordered area gets smaller and the aggregation occurs, which is caused by the high surface energy of small grains. HPC with long pores (HPCL) exhibits a donut-like morphology with well-defined ordered mesopores and a regular orientation while in HPC with short pores (HPCS), short mesopores are only orderly distributed in small regions. Longer ordered channels form unobstructed ways for ions transport in the particles while shorter channels, only orderly distributed in small areas, results in blocked paths, which may hinder the electrolyte ions transport. Due to the unobstructed structure, HPCL exhibits good rate capability with a capacitance retention rate over 86% as current density increasing from 50 mA/g to 1000 mA/g. The specific capacitance of HPCL derived from the cyclic voltammetry test at 10 mV/s is up to 201.72 F/g, while the specific capacitance of HPCS is only 193.65 F/g. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金supported by the China Natural Science Foundation(U1808209)the CAS-DOE program,CAS(QYZDB-SSWJSC032)+1 种基金the Key R&D project of Dalian(2018YF17GX020)the DICP funding(ZZBS201707)。
文摘For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-active materials have been considered as one of the promising technologies for achieving lowcost and high-performance. Herein, we present a critical overview of the progress on the OFBs, including the design principles of key components(redox-active molecules, membranes, and electrodes) and the latest achievement in both aqueous and nonaqueous systems. Finally, future directions in explorations of the high-performance OFB for electrochemical energy storage are also highlighted.
文摘Continuous-wave chemical oxygen-iodine lasers (COILs) can be operated in a pulsed operation mode to obtain a higher peak power.The key point is to obtain a uniform and stable glow discharge in the mixture of singlet delta oxygen and iodide.We propose using an electrode system with the assistance of surface sliding pre-ionization to solve the problem of the stable glow discharge with a large aperture.The pre-ionization unit is symmetrically fixed on the plane of the cathode surface.A uniform and stable glow discharge is obtained in a mixture of iodide (such as CH3I) and nitrogen at the specific deposition energy of 4.5 J/L,pressure of 1.99-3.32 kPa,aperture size of 11 cm × 10cm.The electrode system is applied in a pulsed COIL.Laser energy up to 4.4J is obtained and the specific energy output is 2 J/L.
基金financially supported by the National Natural Science Foundation of China(91545202,91945302)the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS,XDB17000000,XDB36030200)+4 种基金the Ministry of Science and Technology of China(2018YFA0704503)the Liao Ning Revitalization Talents Program(XLYC1807066,XLYC1907099)the Youth Innovation Promotion Association of CAS(Y201829)the State Key Laboratory of Catalysis in DICP(No.N-19-13)the DNL Cooperation Fund,CAS(DNL202003)。
文摘CO_(2)electroreduction reaction(CO_(2)RR),combined with solid oxide electrolysis cells(SOECs),is a feasible technology for the storage of renewable electric energy,while its development is limited by the catalytic activity and stability on cathodes.Here,a novel garnet oxide(Gd_(3)Fe_(5)O_(12))cathode is designed,where the garnet oxide is converted to perovskite oxide and iron via in situ electrochemical phase transition during CO_(2)electroreduction,resulting in high activity with Faradaic efficiency close to 100%and great stability over 1000 h galvanostatic test.A variety of experimental characterizations and density functional theory calculations indicate that in situ exsolved Fe clusters can effectively enhance the adsorption energies of intermediates and lowering the CO_(2)dissociation barriers.Microkinetic modelling confirms that CO_(2)RR goes through a dissociative adsorption mechanism and the electronic transfer for CO_(2)dissociation is the rate-determining step.
基金financially supported by the National Natural Science Foundation of China(22125903,51872283,22005298)。
文摘Electrochemical capacitors(ECs)with unique merits of fast charge/discharge rate and long cyclability are one of the representative electrochemical energy storage systems,possessing wide applications in power electronics and automotive transportation,etc.[1,2].Furthermore.
基金financially supported by the National Natural Science Foundation of China(grant no.21573230)973 National Basic Research Program of the Ministry of Science and Technology(grant no.2014CB239400)
文摘Energy storage is pivotal for the continuous utilization of solar energy suffering from the intermittency issue. Herein, we demonstrate a solar rechargeable flow cell(SRFC) based on photoelectrochemical regeneration of vanadium redox species for in-situ solar energy harvest and storage. In this device, TiO_2 and MWCNT/acetylene black(MWCNT/AB) composite are served as the photoanode and the counter electrode,respectively, with all vanadium redox couples, VO_2~+/VO^(2+)and VO^(2+)/V^(3+), as solar energy storage media.Benefitting from solar energy, the cell can be photocharged under a bias as low as 0.1 V, which is much lower than the discharge voltage of ~0.5 V. Photocharged under the optimized condition, the cell delivers a discharge energy of 23.0 mWh/L with 67.4% input electric energy savings. This prototype work may inspire the rational design for cost-effective solar energy storage devices.