We examined the effects of forest patch size on woody tree species richness and abundance in tropical montane evergreen forest patches of the Nilgiri region,south India. We sampled woody trees(>1 cm dbh) from 21 fo...We examined the effects of forest patch size on woody tree species richness and abundance in tropical montane evergreen forest patches of the Nilgiri region,south India. We sampled woody trees(>1 cm dbh) from 21 forest patches in the upper Nilgiri hills(> 2000 m elevation) and recorded a total of 35,146 individuals of 61 species, 45 genera and 30 families. Species richness and abundance of sapling/shrubs(≥ 1 to < 10 cm dbh)increased significantly with increasing patch size, but the species richness and abundance of small, medium and larger trees(≥ 10 to < 30, ≥ 30 to < 60 and ≥ 60 cm dbh,respectively) did not. Overall, forest interior species richness and abundance increased significantly with increasing patch size but edge species richness did not. Species richness and abundance of shade-tolerant and shade-demanding tree species also increased with increasing patch size. The abundance of zoochory dispersed tree species was significantly related to increasing patch size, but those dispersed by autochory did not display any clear relationship between patch size and species richness or abundance.Our findings suggest that with increasing forest patch area,tree compositional patterns may be driven by species specific shade-tolerance adaptations and dispersal patterns.Differential responses in these traits by the plant community within the individual habitat zones of forest edge and interiors likely plays a major role in determining the inherent plant community and thus the subsequent ecological processes of forest patches, including their responses to increasing patch area.展开更多
Using nonequilibrium molecular dynamics simulations, we study the thermal conductivity of asymmetric double chains. We couple two different single chains through interchain coupling to build three kinds of asymmetric ...Using nonequilibrium molecular dynamics simulations, we study the thermal conductivity of asymmetric double chains. We couple two different single chains through interchain coupling to build three kinds of asymmetric double- stranded chain system: intrachain interaction, external potential, and mass asymmetric double chains. It is reported that asymmetry is helpful in improving the thermal conductivity of the system. We first propose double-heat flux channels to explain the influence of asymmetric structures on the thermal conductivity. The phonon spectral behaviour and finite size effect are also included.展开更多
Low grade ferromanganese tailing was subjected to different mineralogical techniques,reduction roasting and magnetic separation to establish whether commercially acceptable manganese qualities and high Mn/Fe ratio cou...Low grade ferromanganese tailing was subjected to different mineralogical techniques,reduction roasting and magnetic separation to establish whether commercially acceptable manganese qualities and high Mn/Fe ratio could be obtained,and also to determine the best processing route for benefciating this ore.The main manganese mineral within the feed sample is birnessite,with minor amounts of pyrolusite and todorokite.Size by assay analysis conducted presented a result with a yield of about 35.75%and Mn grade of 27.63% to coarse(à3.35+1 mm)and yield of 20.24% and Mn grade of 27.71% to(à1.18+0.50 mm)fraction.Two-stage high induced magnetic separations at 16,000 and 11,000 G produces Mn grades with similar grade to that obtained from the ferromanganese feed sample.Reduction roasting followed by magnetic separation onà1.18+0.50 mm at 1000 G recovered 72.31% Mn with a grade of 58.44% Mn,2.52% Fe and 3.29% Si at Mn/Fe ratio of 23.22.This study reveals the influence of roasting in converting the hematite and goethite to magnetite and the response of the roasted fraction to magnetic separation.展开更多
Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling...Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling opportunities.Herein,we report an open-loop recycling method to produce graded feedstock from mixed polyolefins waste,which makes up 60%of total plastic waste.The method uses heat flow scanning to quantify the composition of plastic waste and resolves its compatibility through controlled dissolution.The resulting feedstock is then used to synthesize blended pellets,porous sorbents,and superhydrophobic coatings via thermally induced phase separation and spin-casting.The hybrid approach broadens the opportunities for reusing plastic waste,which is a step towards creating a more circular economy and better waste management practices.展开更多
Nanocomposite hydrogels are the combination of known components that are a hydrogel and nanometre-sized fillers,typically leading to improved mechanical properties or new functionalities.With simplicity of design and ...Nanocomposite hydrogels are the combination of known components that are a hydrogel and nanometre-sized fillers,typically leading to improved mechanical properties or new functionalities.With simplicity of design and ease of synthesis,recent advances have highlighted that this family of hydrogels holds the significant promise of application in diverse biomedical and engineering fields.The elaborate design and investigation as well as suitable application of nanocomposite hydrogels require the synergy of mechanics,materials science,engineering,and biology.Despite similarities in design and fabrication,the data of mechanical properties for nanocomposite hydrogels scatter in a large space.It is worthwhile comparing various nanocomposite hydrogels for similarities and differences in mechanical properties to aid in designing novel hydrogels with extreme properties,and guide practical applications.This review aims to fill,in the literature,the missing gap of addressing mechanical measurement methods and comparison of mechanical properties in this ever-evolving broad area of research.Finally,the challenges and future research opportunities are highlighted.展开更多
We design some graphene superlattice structures with ultra-low thermal conductivity 121 W//mK, which is only 6~ of the straight graphene nanoribbons. The thermal conductivity of graphene superlattice nanoribbons (GS...We design some graphene superlattice structures with ultra-low thermal conductivity 121 W//mK, which is only 6~ of the straight graphene nanoribbons. The thermal conductivity of graphene superlattice nanoribbons (GSNRs) is investigated by using molecular dynamics simulations. It is reported that the thermal conductivity of graphene superlattiee nanoribbons is significantly lower than that of the straight graphene nanoribbons (GNRs). Compared with the phonon spectra of straight GNRs, GSNRs have more forbidden bands. The overlap of phonon spectra between two supercells is shrinking.展开更多
Nucleophile oxidation reaction(NOR), represented by ethanol oxidation reaction(EOR), is a promising pathway to replace oxygen evolution reaction(OER). EOR can effectively reduce the driving voltage of hydrogen product...Nucleophile oxidation reaction(NOR), represented by ethanol oxidation reaction(EOR), is a promising pathway to replace oxygen evolution reaction(OER). EOR can effectively reduce the driving voltage of hydrogen production in direct water splitting. In this work, large current and high efficiency of EOR on a Ni, Fe layered double hydroxide(NiFe-LDH) catalyst were simultaneously achieved by a facile fluorination strategy. F in NiFe-LDH can reduce the activation energy of the dehydrogenation reaction, thus promoting the deprotonation process of NiFe-LDH to achieve a lower EOR onset potential. It also weakens the absorption of OH-and nucleophile electrooxidation products on the surface of NiFe-LDH at a higher potential, achieving a high current density and EOR selectivity, according to density functional theory calculations. Based on our experiment results, the optimized fluorinated NiFe-LDH catalyst achieves a low potential of 1.386 V to deliver a 10 mA cm^(-2)EOR. Moreover, the Faraday efficiency is greater than 95%, with a current density ranging from 10 to 250 mA cm^(-2). This work provides a promising pathway for an efficient and cost-effective NOR catalyst design for economic hydrogen production.展开更多
Grainy titania coatings are prepared by microarc oxidation on pure titanium (TA2) substrates in a Na2SiO3NaF electrolytic solution. The coating thickness is measured by an optical microscope with a CCD camera. Scann...Grainy titania coatings are prepared by microarc oxidation on pure titanium (TA2) substrates in a Na2SiO3NaF electrolytic solution. The coating thickness is measured by an optical microscope with a CCD camera. Scanning electron microscope (SEM) and x-ray diffraction (XRD) are employed to characterize the microstructure and phase composition of coatings. The results show that the coating thickness increases linearly as the treatment time increases. The coatings are mainly composed of anatase and rutile (TiO2). With the increase of treatment time, the predominant phase composition varies from anatase to rutile, which indicates that phase transformation of anatase into rutile occurs in the oxidizing process. Meanwhile, the size of grains existing on the coating surface increases and thus the surface becomes much coarser.展开更多
Using non-equilibrium molecular dynamics and Monte Carlo methods, we study the collective diffusion of helium in carbon nanotubes. The results show that the collective diffusion coefficient(CDC) increases with the d...Using non-equilibrium molecular dynamics and Monte Carlo methods, we study the collective diffusion of helium in carbon nanotubes. The results show that the collective diffusion coefficient(CDC) increases with the dimension of the channel. The collective diffusion coefficient has a linear relationship with the temperature and the concentration. There exist a ballistic transport in short carbon nanotubes and a diffusive transport in long carbon nanotubes. Fick's law has an invalid region in the nanoscale channel.展开更多
Developing highly active oxygen evolution reaction(OER)electrocatalysts with robust durability is essential in producing high-purity hydrogen through water electrolysis.Layered double hydroxide(LDH)based catalysts hav...Developing highly active oxygen evolution reaction(OER)electrocatalysts with robust durability is essential in producing high-purity hydrogen through water electrolysis.Layered double hydroxide(LDH)based catalysts have demonstrated efficient catalytic performance toward the relatively sluggish OER.By considering the promotion effect of phosphate(Pi)on proton transfer,herein,a facile phosphate acid(PA)surface-neutralization strategy is developed to in-situ construct NiCo-LDH/NiCoPi hetero-sheets toward OER catalysis.OER activity of NiCoLDH is significantly boosted due to the proton promotion effect and the electronic modulation effect of NiCoPi.As a result,the facilely prepared NiCo-LDH/NiCoPi catalyst displays superior OER catalytic activity with a low overpotential of 300 mV to deliver 100 mA cm^(-2)OER and a Tafel slope of 73 mV dec^(-1).Furthermore,no visible activity decay is detected after a 200-h continuous OER operation.The present work,therefore,provides a promising strategy to exploit robust OER electrocatalysts for commercial water electrolysers.展开更多
A database system,known as the large PMT characterization and instrumentation database system(LPMT-CIDS),was designed and implemented for the Jiangmen Underground Neutrino Observatory(JUNO).The system is based on a Li...A database system,known as the large PMT characterization and instrumentation database system(LPMT-CIDS),was designed and implemented for the Jiangmen Underground Neutrino Observatory(JUNO).The system is based on a Linux+Apache+MySQL+PHP(LAMP)server and focuses on modularization and architecture separation.It covers all the testing stages for the 20-inch photomultiplier tubes(PMTs)at JUNO and provides its users with data storage,analysis,and visualization services.Based on the successful use of the system in the 20-inch PMT testing program,its design approach and construction elements can be extended to other projects.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)through Young Scientist Grant No.31200173,P.R.ChinaCenter for Tropical Forest Science,Smithsonian Tropical Research Institute,Panama
文摘We examined the effects of forest patch size on woody tree species richness and abundance in tropical montane evergreen forest patches of the Nilgiri region,south India. We sampled woody trees(>1 cm dbh) from 21 forest patches in the upper Nilgiri hills(> 2000 m elevation) and recorded a total of 35,146 individuals of 61 species, 45 genera and 30 families. Species richness and abundance of sapling/shrubs(≥ 1 to < 10 cm dbh)increased significantly with increasing patch size, but the species richness and abundance of small, medium and larger trees(≥ 10 to < 30, ≥ 30 to < 60 and ≥ 60 cm dbh,respectively) did not. Overall, forest interior species richness and abundance increased significantly with increasing patch size but edge species richness did not. Species richness and abundance of shade-tolerant and shade-demanding tree species also increased with increasing patch size. The abundance of zoochory dispersed tree species was significantly related to increasing patch size, but those dispersed by autochory did not display any clear relationship between patch size and species richness or abundance.Our findings suggest that with increasing forest patch area,tree compositional patterns may be driven by species specific shade-tolerance adaptations and dispersal patterns.Differential responses in these traits by the plant community within the individual habitat zones of forest edge and interiors likely plays a major role in determining the inherent plant community and thus the subsequent ecological processes of forest patches, including their responses to increasing patch area.
基金supported in part by the National Natural Science Foundation of China (Grant No. 11004082)the Natural Science Foundation of Guangdong Province of China (Grant No. 01005249)the Fundamental Research Funds for the Central Universities of China (Grant No. 21609305)
文摘Using nonequilibrium molecular dynamics simulations, we study the thermal conductivity of asymmetric double chains. We couple two different single chains through interchain coupling to build three kinds of asymmetric double- stranded chain system: intrachain interaction, external potential, and mass asymmetric double chains. It is reported that asymmetry is helpful in improving the thermal conductivity of the system. We first propose double-heat flux channels to explain the influence of asymmetric structures on the thermal conductivity. The phonon spectral behaviour and finite size effect are also included.
文摘Low grade ferromanganese tailing was subjected to different mineralogical techniques,reduction roasting and magnetic separation to establish whether commercially acceptable manganese qualities and high Mn/Fe ratio could be obtained,and also to determine the best processing route for benefciating this ore.The main manganese mineral within the feed sample is birnessite,with minor amounts of pyrolusite and todorokite.Size by assay analysis conducted presented a result with a yield of about 35.75%and Mn grade of 27.63% to coarse(à3.35+1 mm)and yield of 20.24% and Mn grade of 27.71% to(à1.18+0.50 mm)fraction.Two-stage high induced magnetic separations at 16,000 and 11,000 G produces Mn grades with similar grade to that obtained from the ferromanganese feed sample.Reduction roasting followed by magnetic separation onà1.18+0.50 mm at 1000 G recovered 72.31% Mn with a grade of 58.44% Mn,2.52% Fe and 3.29% Si at Mn/Fe ratio of 23.22.This study reveals the influence of roasting in converting the hematite and goethite to magnetite and the response of the roasted fraction to magnetic separation.
基金NPRP grant number NPRP12S-0325-190443 from the Qatar National Research Fund (a member of the Qatar Foundation)
文摘Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling opportunities.Herein,we report an open-loop recycling method to produce graded feedstock from mixed polyolefins waste,which makes up 60%of total plastic waste.The method uses heat flow scanning to quantify the composition of plastic waste and resolves its compatibility through controlled dissolution.The resulting feedstock is then used to synthesize blended pellets,porous sorbents,and superhydrophobic coatings via thermally induced phase separation and spin-casting.The hybrid approach broadens the opportunities for reusing plastic waste,which is a step towards creating a more circular economy and better waste management practices.
基金Flinders University through the DVCR Research Investment Fund Scheme to provide Research Support for ECR to MCR Academics.
文摘Nanocomposite hydrogels are the combination of known components that are a hydrogel and nanometre-sized fillers,typically leading to improved mechanical properties or new functionalities.With simplicity of design and ease of synthesis,recent advances have highlighted that this family of hydrogels holds the significant promise of application in diverse biomedical and engineering fields.The elaborate design and investigation as well as suitable application of nanocomposite hydrogels require the synergy of mechanics,materials science,engineering,and biology.Despite similarities in design and fabrication,the data of mechanical properties for nanocomposite hydrogels scatter in a large space.It is worthwhile comparing various nanocomposite hydrogels for similarities and differences in mechanical properties to aid in designing novel hydrogels with extreme properties,and guide practical applications.This review aims to fill,in the literature,the missing gap of addressing mechanical measurement methods and comparison of mechanical properties in this ever-evolving broad area of research.Finally,the challenges and future research opportunities are highlighted.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11004082 and 11291240477the Natural Science Foundation of Guangdong Province under Grant No 2014A030313367the Fundamental Research Funds for the Central Universities under Grant No 11614341
文摘We design some graphene superlattice structures with ultra-low thermal conductivity 121 W//mK, which is only 6~ of the straight graphene nanoribbons. The thermal conductivity of graphene superlattice nanoribbons (GSNRs) is investigated by using molecular dynamics simulations. It is reported that the thermal conductivity of graphene superlattiee nanoribbons is significantly lower than that of the straight graphene nanoribbons (GNRs). Compared with the phonon spectra of straight GNRs, GSNRs have more forbidden bands. The overlap of phonon spectra between two supercells is shrinking.
基金the financial support from the National Natural Science Foundation of China (22197121)Knowledge Innovation Program of Wuhan-Basic Research (2022010801010202)Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology (FC202201)。
文摘Nucleophile oxidation reaction(NOR), represented by ethanol oxidation reaction(EOR), is a promising pathway to replace oxygen evolution reaction(OER). EOR can effectively reduce the driving voltage of hydrogen production in direct water splitting. In this work, large current and high efficiency of EOR on a Ni, Fe layered double hydroxide(NiFe-LDH) catalyst were simultaneously achieved by a facile fluorination strategy. F in NiFe-LDH can reduce the activation energy of the dehydrogenation reaction, thus promoting the deprotonation process of NiFe-LDH to achieve a lower EOR onset potential. It also weakens the absorption of OH-and nucleophile electrooxidation products on the surface of NiFe-LDH at a higher potential, achieving a high current density and EOR selectivity, according to density functional theory calculations. Based on our experiment results, the optimized fluorinated NiFe-LDH catalyst achieves a low potential of 1.386 V to deliver a 10 mA cm^(-2)EOR. Moreover, the Faraday efficiency is greater than 95%, with a current density ranging from 10 to 250 mA cm^(-2). This work provides a promising pathway for an efficient and cost-effective NOR catalyst design for economic hydrogen production.
文摘Grainy titania coatings are prepared by microarc oxidation on pure titanium (TA2) substrates in a Na2SiO3NaF electrolytic solution. The coating thickness is measured by an optical microscope with a CCD camera. Scanning electron microscope (SEM) and x-ray diffraction (XRD) are employed to characterize the microstructure and phase composition of coatings. The results show that the coating thickness increases linearly as the treatment time increases. The coatings are mainly composed of anatase and rutile (TiO2). With the increase of treatment time, the predominant phase composition varies from anatase to rutile, which indicates that phase transformation of anatase into rutile occurs in the oxidizing process. Meanwhile, the size of grains existing on the coating surface increases and thus the surface becomes much coarser.
基金supported by the National Natural Science Foundation of China(Grant Nos.11004082 and 11291240477)the Natural Science Foundation of Guangdong Province,China(Grant No.2014A030313367)the Fundamental Research Funds for the Central Universities,Jinan University(Grant No.11614341)
文摘Using non-equilibrium molecular dynamics and Monte Carlo methods, we study the collective diffusion of helium in carbon nanotubes. The results show that the collective diffusion coefficient(CDC) increases with the dimension of the channel. The collective diffusion coefficient has a linear relationship with the temperature and the concentration. There exist a ballistic transport in short carbon nanotubes and a diffusive transport in long carbon nanotubes. Fick's law has an invalid region in the nanoscale channel.
基金financial support from the National Natural Science Foundation of China(21875224 and22179121)Knowledge Innovation Program of Wuhan-Basic Research(2022010801010202)Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202201)。
文摘Developing highly active oxygen evolution reaction(OER)electrocatalysts with robust durability is essential in producing high-purity hydrogen through water electrolysis.Layered double hydroxide(LDH)based catalysts have demonstrated efficient catalytic performance toward the relatively sluggish OER.By considering the promotion effect of phosphate(Pi)on proton transfer,herein,a facile phosphate acid(PA)surface-neutralization strategy is developed to in-situ construct NiCo-LDH/NiCoPi hetero-sheets toward OER catalysis.OER activity of NiCoLDH is significantly boosted due to the proton promotion effect and the electronic modulation effect of NiCoPi.As a result,the facilely prepared NiCo-LDH/NiCoPi catalyst displays superior OER catalytic activity with a low overpotential of 300 mV to deliver 100 mA cm^(-2)OER and a Tafel slope of 73 mV dec^(-1).Furthermore,no visible activity decay is detected after a 200-h continuous OER operation.The present work,therefore,provides a promising strategy to exploit robust OER electrocatalysts for commercial water electrolysers.
基金supported by the National Natural Science Foundation of China (No. 11675273)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA10011102)
文摘A database system,known as the large PMT characterization and instrumentation database system(LPMT-CIDS),was designed and implemented for the Jiangmen Underground Neutrino Observatory(JUNO).The system is based on a Linux+Apache+MySQL+PHP(LAMP)server and focuses on modularization and architecture separation.It covers all the testing stages for the 20-inch photomultiplier tubes(PMTs)at JUNO and provides its users with data storage,analysis,and visualization services.Based on the successful use of the system in the 20-inch PMT testing program,its design approach and construction elements can be extended to other projects.