期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Trend judgment of abandoned channels and fine architecture characterization in meandering river reservoirs: A case study of Neogene Minhuazhen Formation NmⅢ2 layer in Shijiutuo bulge, Chengning uplift, Bohai Bay Basin, East China 被引量:1
1
作者 NIU Bo ZHAO Jiahong +9 位作者 FU Ping LI Junjian BAO Zhidong HU Yong SU Jinchang GAO Xingjun ZHANG Chi YU Dengfei ZANG Dongsheng LI Min 《Petroleum Exploration and Development》 2019年第5期943-953,共11页
Based on well logging responses,sedimentary patterns and sandstone thickness,the distribution characteristics of meandering river sedimentary sand body of Neogene Minghuazhen Formation NmⅢ2 layer in the west of Shiji... Based on well logging responses,sedimentary patterns and sandstone thickness,the distribution characteristics of meandering river sedimentary sand body of Neogene Minghuazhen Formation NmⅢ2 layer in the west of Shijiutuo Bulge,Chengning Uplift,Bohai Bay Basin were investigated.A new approach to calculate the occurrence of the sand-mudstone interfaces using resistivity log of horizontal well was advanced to solve the multiple solution problem of abandoned channel’s orientation.This method uses the trigonometric function relationship between radius,dip and length of the resistivity log to calculate the occurrence qualitatively-quantitatively to help determine the true direction of the abandoned channels.This method can supplement and improve the architecture dissection technique for meandering river sandbodies.This method was used to study the dip angle and scale of the lateral accretion layers in point bar quantitatively to help determine the spatial distribution of lateral accretion layers.The fine architecture model of underground meandering river reservoir in the study area has been established.Different from traditional grids,different grid densities for lateral accretion layers and bodies were used in this model by non-uniform upscaling to establish the inner architecture model of point-bars and realize industrial numerical simulation of the whole study area.The research results can help us predict the distribution of remaining oil,tap remaining oil,and optimize the waterflooding in oilfields. 展开更多
关键词 Bohai Bay Basin MEANDERING river horizontal well resistivity curve LATERAL ACCRETION layers LATERAL ACCRETION bodies ARCHITECTURE modeling remaining oil distribution
在线阅读 下载PDF
Numerical Simulation Research on Energy Supplement of Low Permeability Reservoirs with Fractured Horizontal Wells
2
作者 Qu Haiyang Yang Zhengming Ling Haochuan 《China Oil & Gas》 CAS 2014年第4期29-33,共5页
The fractured horizontal wells are widely used in many large oil fields to enhance oil recovery.Currently most of fractured horizontal wells were developed in elastic recovery.It is urgently needed to supply formation... The fractured horizontal wells are widely used in many large oil fields to enhance oil recovery.Currently most of fractured horizontal wells were developed in elastic recovery.It is urgently needed to supply formation energy because of the fast production and pressure decline.In this paper,a five-spot model of horizontal wells was built based on the Jilin Oilfield geological data from the horizontal wells demonstration area.Compositional simulation were applied to study on the effectiveness of four development methods for three types of low permeability reservoirs with fractured horizontal wells and the impact of the distribution of the fracture was analyzed.Reasonable suggestions were proposed for three types of low permeability reservoirs from two aspects,development mode and fracturing design.This paper will provide some guidance for fractured horizontal well development. 展开更多
关键词 压裂水平井 低渗透油藏 数值模拟 能量补充 水平井开发 石油采收率 大型油田 弹性恢复
在线阅读 下载PDF
Experimental Investigation on Condensate Revaporization During Gas Injection Development in Fractured Gas Condensate Reservoirs
3
作者 Lei Zhang Yingxu He +3 位作者 Jintao Wu Haojun Wu Lei Huang Linna Sun 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期575-582,共8页
The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs si... The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs. 展开更多
关键词 Buried-hill fractured reservoir Gas condensate reservoir Retrograde condensation CO_(2)injection Retrograde vaporization
在线阅读 下载PDF
Permeability and heterogeneity adaptability of surfactant-alternating-gas foam for recovering oil from low-permeability reservoirs 被引量:4
4
作者 Ming-Chen Ding Qiang Li +3 位作者 Yu-Jing Yuan Ye-Fei Wang Ning Zhao Yu-Gui Han 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1185-1197,共13页
As the traditional polymer stabilizer is eliminated to improve the injectability of foam in lowpermeability reservoirs,the stability,plugging capacity,conformance control and oil recovery performance of the surfactant... As the traditional polymer stabilizer is eliminated to improve the injectability of foam in lowpermeability reservoirs,the stability,plugging capacity,conformance control and oil recovery performance of the surfactant-alternating-gas(SAG)foam become significantly important for determining its adaptability to permeability and heterogeneity,which were focused and experimentally researched in this paper.Results show that the SAG bubbles are highly stable in micron-sized channels and porous media(than in the conventional unconstrained graduated cylinder),making it possible to use in enhanced oil recovery(EOR).Such bubbles formed in porous media could be passively adjusted to match their diameter with the size of the pore.This endows the SAG foam with underlying excellent injectability and deep migration capacity.Permeability adaptability results indicate a reduced plugging capacity,but,increased incremental oil recovery by the SAG foam with decreased permeability.This makes it a good candidate for EOR over a wide range of permeability,however,parallel core floods demonstrate that there is a limiting heterogeneity for SAG application,which is determined to be a permeability contrast of 12.0(for a reservoir containing oil of 9.9 m Pa s).Beyond this limit,the foam would become ineffective. 展开更多
关键词 SAG foam EOR Low-permeability reservoir PERMEABILITY HETEROGENEITY
在线阅读 下载PDF
Effect of modification degrees on the interfacial properties and EOR efficiency of amphiphilic Janus graphene oxide 被引量:1
5
作者 Han Jia Xin Wei +7 位作者 Qiu-Xia Wang Yuan-Bo Wang Shi-Jie Wen Fang-Ning Fan Qiang Wang Zhe Wang De-Xin Liu Pan Huang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1217-1224,共8页
Asymmetrically modified Janus graphene oxide(JGO)has attracted great attention due to its unique physical chemistry properties and wide applications.The modification degree of Janus nanosheets inevitably affects their... Asymmetrically modified Janus graphene oxide(JGO)has attracted great attention due to its unique physical chemistry properties and wide applications.The modification degree of Janus nanosheets inevitably affects their interfacial activity,which is essential for their performances in enhanced oil recovery(EOR).In this study,the interfacial properties of Janus graphene oxide(JGO)with various modification degrees at liquid-liquid and liquid-solid interfaces were systematically evaluated via the measurements of interfacial tension(IFT),dilatational modulus,contact angle,and EOR efficiency was further assessed by core flooding tests.It is found that JGO-5 with higher modification degree exhibits the greater ability to reduce IFT(15.16 mN/m)and dilatational modulus(26 mN/m).Furthermore,JGO can construct interfacial and climbing film with the assistance of hydrodynamic power to effectively detach the oil from the rock surface and greatly enhance oil recovery.Moderately modified JGO-2 can highly improve recovery of residual crude oil(11.53%),which is regarded as the promising EOR agent in practical application.The present study firstly focuses on the effects of modification degrees on the JGO interfacial properties and proposes diverse EOR mechanisms for JGO with different modification degrees. 展开更多
关键词 Graphene oxide Modification degrees Janus nanosheets Interfacial film EOR
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部