电力场景的三维语义信息识别是其后续精细化管理的基础和关键,然而,由于电力场景地物结构信息复杂、纹理多样,为其精细化理解与识别带来了一定的困难和挑战。本文提出了一种基于改进RandLA-Net的电力场景点云语义分割方法,该方法通过引...电力场景的三维语义信息识别是其后续精细化管理的基础和关键,然而,由于电力场景地物结构信息复杂、纹理多样,为其精细化理解与识别带来了一定的困难和挑战。本文提出了一种基于改进RandLA-Net的电力场景点云语义分割方法,该方法通过引入特征拓展和分离池化操作来提高模型的性能,并在电力数据集上测试了该方法的实际效果,将其与现有的语义分割方法进行了比较。结果表明,该方法在准确性和效率方面具有很强的优势,综合对比来看,比前沿的RandLA-Net(Random Sampling and Local Feature Aggregator Network)提高了2.64和2.9的总体精度及平均交并比值,验证了该方法的有效性。展开更多
文摘电力场景的三维语义信息识别是其后续精细化管理的基础和关键,然而,由于电力场景地物结构信息复杂、纹理多样,为其精细化理解与识别带来了一定的困难和挑战。本文提出了一种基于改进RandLA-Net的电力场景点云语义分割方法,该方法通过引入特征拓展和分离池化操作来提高模型的性能,并在电力数据集上测试了该方法的实际效果,将其与现有的语义分割方法进行了比较。结果表明,该方法在准确性和效率方面具有很强的优势,综合对比来看,比前沿的RandLA-Net(Random Sampling and Local Feature Aggregator Network)提高了2.64和2.9的总体精度及平均交并比值,验证了该方法的有效性。