期刊文献+
共找到2,293篇文章
< 1 2 115 >
每页显示 20 50 100
Analysis and verification of electrodynamic force,thermal stress and current sharing for CRAFT converter structure design
1
作者 王重马 石朝毅 +6 位作者 张秀青 卢文武 张胜 高先和 许涛 邵兴星 黄连生 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期104-111,共8页
In the design realm of fusion power supplies,structural components play a pivotal role in ensuring the safety of fusion devices.To verify the reliability of the converter structure design at the Comprehensive Research... In the design realm of fusion power supplies,structural components play a pivotal role in ensuring the safety of fusion devices.To verify the reliability of the converter structure design at the Comprehensive Research Facility for Fusion Technology(CRAFT),meticulous analysis of the converter's dynamic impact is carefully performed based on the worst fault current(400k A),firstly.Subsequently,the thermal stress analysis based on the maximum allowable steadystate temperature is finished,and the equivalent thermal stress,thermal deformation,maximum shear stress of a single bridge arm and the whole converter are studied.Furthermore,a simple research method involving the current-sharing characteristics of a bridge arm with multithyristor parallel connection is proposed using a combination of Simplorer with Q3D in ANSYS.The results show that the current-sharing characteristics are excellent.Finally,the structural design has been meticulously tailored to meet the established requirements. 展开更多
关键词 electrodynamic analysis thermal stress current-sharing characteristics CRAFT
在线阅读 下载PDF
Application of thermal stress model to paint removal by Q-switched Nd:YAG laser 被引量:8
2
作者 邹万芳 谢应茂 +2 位作者 肖兴 曾祥志 罗颖 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期433-438,共6页
In this paper, we demonstrate that thermal stress is the main mechanism in the process of paint removal by Q-switched Nd:YAG laser (λ = 1064 nm, τ = 10 ns). A theoretical model ofpaint removal by short-pulse lase... In this paper, we demonstrate that thermal stress is the main mechanism in the process of paint removal by Q-switched Nd:YAG laser (λ = 1064 nm, τ = 10 ns). A theoretical model ofpaint removal by short-pulse laser is established from the perspective of thermal stress. Thermal stress is generated by thermal expansion, and the temperatures of different samples are calculated according to the one-dimensional (1D) heat conduction equation. The theoretical cleaning threshold can be obtained by comparing thermal stress with the adhesion of paint, and the theoretical damage threshold is obtained by calculating the temperature. Moreover, the theoretical calculations are verified by experimental results. It is shown that the thermal stress model of the laser cleaning is very useful to choose the appropriate laser fluence in the practical applications of paint removal by Q-switched Nd: YAG laser because our model can validly balance the efficiency of laser cleaning and the safety of the substrate. 展开更多
关键词 laser cleaning thermal stress cleaning threshold damage threshold
在线阅读 下载PDF
Numerical simulation of coupling heat transfer and thermal stress for spent fuel dry storage cask with different power distribution and tilt angles 被引量:1
3
作者 Wei‑Hao Ji Jian‑Jie Cheng +1 位作者 Han‑Zhong Tao Wei Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期109-127,共19页
Dry storage containers must be secured and reliable during long-term storage,and the effect of decay heat released from the internal spent fuel on the cask has become an important research topic.In this paper,a 3D com... Dry storage containers must be secured and reliable during long-term storage,and the effect of decay heat released from the internal spent fuel on the cask has become an important research topic.In this paper,a 3D computational fluid dynamics model is presented,and the accuracy of the calculation is verified,with computational errors of less than 6.2%.The thermal stress of the dry storage cask was estimated by coupling it with a transient temperature field.The total power remained constant and adjusting the power ratio of the inner and outer zones had a small effect on the stress results,with a maximum equivalent stress of approximately 5.2 kPa,which occurred at the lower edge of the shell.In the case of tilt,the temperature gradient varied in a wavy distribution,and the wave crest moved from right to left.Altering the tilt angle affects the air distribution in the annular gap,leading to the shell temperature being transformed,with a maximum equivalent stress of 202 MPa at the bottom of the shell.However,the equivalent stress in both cases was less than the yield stress(205 MPa). 展开更多
关键词 thermal stress CFD simulation Spent nuclear fuel Dry storage cask
在线阅读 下载PDF
Analysis of Residual Thermal Stress in CVD-W Coating as Plasma Facing Material
4
作者 朱大焕 王坤 +2 位作者 王先平 陈俊凌 方前锋 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第7期656-660,共5页
Chemical vapor deposition-tungsten (CVD-W) coating covering the surface of the plasma facing component (PFC) is an effective method to implement the tungsten material as plasma facing material (PFM) in fusion de... Chemical vapor deposition-tungsten (CVD-W) coating covering the surface of the plasma facing component (PFC) is an effective method to implement the tungsten material as plasma facing material (PFM) in fusion devices. Residual thermal stress in CVD-W coating due to thermal mismatch between coating and substrate was successfully simulated by using a finite element method (ANSYS 10.0 code). The deposition parametric effects, i.e., coating thickness and deposition temperature, and interlayer were investigated to get a description of the residual thermal stress in the CVD-W coating-substrate system. And the influence of the substrate materials on the generation of residual thermal stress in the CVD-W coating was analyzed with respect to the CVD-W coating application as PFM. This analysis is beneficial for the preparation and application of CVD-W coating. 展开更多
关键词 W-coating CVD residual thermal stress PFM FEA
在线阅读 下载PDF
Thermal Stresses and Theorem on Decomposition
5
作者 Valeriy Lokhov Yuriy Nyashin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第2期175-179,共5页
The thermal expansion strain is considered as a special case of eigenstrain.The authors proved the theorem on decomposition of eigenstrain existing in a body into two constituents:Impotent eigenstrain(not causing stre... The thermal expansion strain is considered as a special case of eigenstrain.The authors proved the theorem on decomposition of eigenstrain existing in a body into two constituents:Impotent eigenstrain(not causing stress in any point of a body)and nilpotent eigenstrain(not causing strain in any point of a body).According to this theorem,the thermal stress can be easily found through the nilpotent eigenstrain.If the eigenstrain is an impotent one,the thermal stress vanishes.In this case,the eigenstrain must be compatible.The authors suggest a new approach to measure of eigenstrain incompatibility and hence to estimate of thermal stresses. 展开更多
关键词 EIGENSTRAIN thermal stresses DECOMPOSITION impotent eigenstrain nilpotent eigenstrain functional space
在线阅读 下载PDF
Influence of Patch Side of Heat-Ray Absorbing Film on One-Dimensional Unsteady Thermal Stresses in Window Glass
6
作者 Yoshitaka Iyama Yoshihiro Obata 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第2期164-168,共5页
Heat-ray absorbing film is used to be bonded on the existing sheet glasses of the windows.It is effective for air-conditioning energy saving against the global warming,because it absorbs heat-ray in the thin film and ... Heat-ray absorbing film is used to be bonded on the existing sheet glasses of the windows.It is effective for air-conditioning energy saving against the global warming,because it absorbs heat-ray in the thin film and decreases the incoming heat-ray into the room.On the other hand,the sheet glasses increase the temperature at the surface which the sheet is bonded and sometimes yield heat cracks by thermal stresses.It is important to know the state of thermal stresses accurately in order to develop the heat-ray absorbing film with higher performance and without heat cracks.In this paper,the analysis model is treated as the two-layer plate of the conventional soda sheet glass and the heat-ray absorbing film with different absorptivities.The unsteady temperature and thermal stresses are analyzed and calculated numerically.The influence of the patch side,which the heat-ray absorbing film is bonded at the exterior side or the interior side,on the heat-ray absorbing performance and the thermal stresses is discussed.It is found that the alternative patch side has no effect on the heat-ray absorbing performance and that the patch side is recommended to be interior side from a view point of decreasing thermal stresses against the heat crack of glasses. 展开更多
关键词 thermal stress heat crack sheet glass heat-ray absorbing film global warming
在线阅读 下载PDF
The Effects of Nonuniform Thermal Boundary Condition on Thermal Stress Calculation of Water-Cooled W/Cu Divertors
7
作者 韩乐 常海萍 +2 位作者 张镜洋 刘楠 许铁军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第10期988-994,共7页
The thermal boundary condition has very important effects on the accuracy of thermal stress calculation of a water-cooled W/Cu divertor. In this paper, phase-change heat transfer was simulated based on the Euler homog... The thermal boundary condition has very important effects on the accuracy of thermal stress calculation of a water-cooled W/Cu divertor. In this paper, phase-change heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The steady-state temperature field and thermal stress field under nonuniform thermal boundary conditions were obtained through numerical calculation. By comparison with the case of traditional uniform thermal boundary conditions, the results show that the distribution of thermal stress under nonuniform thermal boundary conditions exhibits tbe same trend as that under uniform thermal boundary conditions, but is larger in value. The maximum difference of maximum von Mises stress is up to 42% under the highest heating conditions. These results provide a valuable reference for the thermal stress caleulat.ion of water-cooled W/Cu divertors. 展开更多
关键词 W/Cu divcrtor thermal stress nonuniform thermal boundary condition mlincrical alculation
在线阅读 下载PDF
Influence of thermal stress on the characteristic parameters of AlGaN/GaN heterostructure Schottky contacts
8
作者 吕元杰 林兆军 +5 位作者 张宇 孟令国 曹芝芳 栾崇彪 陈弘 王占国 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第4期430-434,共5页
Ni Schottky contacts on A1GaN/GaN heterostructures have been fabricated. The samples are then thermally treated in a furnace with N2 ambient at 600℃ for different times (0.5, 4.5, 10.5, 18, 33, 48 and 72 h). Curren... Ni Schottky contacts on A1GaN/GaN heterostructures have been fabricated. The samples are then thermally treated in a furnace with N2 ambient at 600℃ for different times (0.5, 4.5, 10.5, 18, 33, 48 and 72 h). Current-voltage (I-V) and capacitance-voltage (C-V) relationships are measured, and SchrSdinger's and Poisson's equations are self- consistently solved to obtain the characteristic parameters related to A1GaN/GaN heterostructure $chottky contacts: the two-dimensional electron gas (2DEG) sheet density, the polarization sheet charge density, the 2DEG distribution in the triangle quantum well and the Schottky barrier height for each thermal stressing time. Most of the above parameters reduce with the increase of stressing time, only the parameter of the average distance of the 2DEG from the A1CaN/GaN interface increases with the increase of thermal stressing time. The changes of the characteristic parameters can be divided into two stages. In the first stage the strain in the A1GaN barrier layer is present. In this stage the characteristic parameters change rapidly compared with those in the second stage in which the AlGaN barrier layer is relaxed and no strain is present. 展开更多
关键词 AlGaN/GaN heterostructures thermal stressing polarization self-consistently solving SchrSdinger's and Poisson's equations
在线阅读 下载PDF
Role of Thermal Stresses in Degradation of High Power Laser Diodes
9
作者 Juan Jimenez Julian Anaya Jorge Souto 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第2期186-190,共5页
Catastrophic degradation of high power laser diodes is due to the generation of extended defects inside the active parts of the laser structure during the laser operation.The mechanism driving the degradation is stron... Catastrophic degradation of high power laser diodes is due to the generation of extended defects inside the active parts of the laser structure during the laser operation.The mechanism driving the degradation is strongly related to the existence of localized thermal stresses generated during the laser operation.These thermal stresses can overcome the yield strength of the materials forming the active part of the laser diode.Different factors contribute to reduce the laser power threshold for degradation.Among them the thermal transport across the laser structure constitutes a critical issue for the reliability of the device. 展开更多
关键词 high power laser diodes thermal stresses laser degradation extended defects
在线阅读 下载PDF
Thermal stress damage mechanism in single-crystal germanium caused by 1080 nm laser irradiation
10
作者 沙银川 李泽文 +2 位作者 贾志超 韩冰 倪晓武 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期572-578,共7页
The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model base... The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model based on Fourier's heat conduction equation,Hooke's law and the Alexander–Hasson equation was developed to analyze the thermal stress damage mechanism involved.The damage morphology of the ablated samples was observed using an optical microscope.The results show that the cooling process has an important influence on fracture in the laser-irradiated region of single-crystal germanium.Fracture is the result of a combination of thermal stress and reduction in local yield strength. 展开更多
关键词 thermal stress single-crystal germanium FRACTURE damage mechanism
在线阅读 下载PDF
Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates
11
作者 Ze-Yuan Yang Jun Wang +4 位作者 Guo-Feng Wu Yong-Qing Huang Xiao-Min Ren Hai-Ming Ji Shuai Luo 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期359-364,共6页
We investigate the thermal stresses for GaAs layers grown on V-groove patterned Si substrates by the finite-element method. The results show that the thermal stress distribution near the interface in a patterned subst... We investigate the thermal stresses for GaAs layers grown on V-groove patterned Si substrates by the finite-element method. The results show that the thermal stress distribution near the interface in a patterned substrate is nonuniform,which is far different from that in a planar substrate. Comparing with the planar substrate, the thermal stress is significantly reduced for the Ga As layer on the patterned substrate. The effects of the width of the V-groove, the thickness, and the width of the SiO_(2) mask on the thermal stress are studied. It is found that the SiO_(2) mask and V-groove play a crucial role in the stress of the Ga As layer on Si substrate. The results indicate that when the width of V-groove is 50 nm, the width and the thickness of the SiO_(2) mask are both 100 nm, the Ga As layer is subjected to the minimum stress. Furthermore,Comparing with the planar substrate, the average stress of the Ga As epitaxial layer in the growth window region of the patterned substrate is reduced by 90%. These findings are useful in the optimal designing of growing high-quality Ga As films on patterned Si substrates. 展开更多
关键词 GaAs on Si thermal stress V-groove finite-element method
在线阅读 下载PDF
One-Dimensional-Unsteady Thermal Stress in Heat-Ray Absorbing Sheet Glass:Influence of a Sudden Weather Change
12
作者 Tomohiko Hachiya Yoshihiro Obata 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第2期147-151,共5页
Heat-ray absorbing sheet glass can decrease electric energy used for air-conditioning by controling the incoming heat-ray through windows into the rooms.On the other hand,the glasses increase the temperature and somet... Heat-ray absorbing sheet glass can decrease electric energy used for air-conditioning by controling the incoming heat-ray through windows into the rooms.On the other hand,the glasses increase the temperature and sometimes yield heat cracks by thermal stresses.It is important to know the state of thermal stress accurately in order to develop heat-ray absorbing sheet glasses with higher performance and without heat cracks.A conventional design manual at field site treats the steady state and the thermal boundary condition that all heat-rays are absorbed at glass surface.In this paper,it is assumed that the heat-ray is absorbed over all the plate thickness.The idea of the local absorptibity per unit length is introduced.The modeling of internal heat absorbing process is proposed.It can explain well that the total absorptivity depends on the plate thickness.The temperature and the thermal stresses are calculated and discussed.Sudden weather changes such as rain and/or wind after the glass is heated to be steady state are also discussed.Those weather changes are treated with the change of amount of absorbed heat-ray and/or the change of heat transfer coefficient between the glass surface and the outside atmosphere. 展开更多
关键词 thermal stress sheet glassl heat-ray absorptivity heat crack
在线阅读 下载PDF
Size-dependent thermal stresses in the core–shell nanoparticles
13
作者 Astefanoaei I Dumitru I Stancu Al 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期483-490,共8页
The thermal stress in a magnetic core–shell nanoparticle during a thermal process is an important parameter to be known and controlled in the magnetization process of the core–shell system. In this paper we analyze ... The thermal stress in a magnetic core–shell nanoparticle during a thermal process is an important parameter to be known and controlled in the magnetization process of the core–shell system. In this paper we analyze the stress that appears in a core–shell nanoparticle subjected to a cooling process. The external surface temperature of the system, considered in equilibrium at room temperature, is instantly reduced to a target temperature. The thermal evolution of the system in time and the induced stress are studied using an analytical model based on a time-dependent heat conduction equation and a differential displacement equation in the formalism of elastic displacements. The source of internal stress is the difference in contraction between core and shell materials due to the temperature change. The thermal stress decreases in time and is minimized when the system reaches the thermal equilibrium. The radial and azimuthal stress components depend on system geometry, material properties, and initial and final temperatures. The magnitude of the stress changes the magnetic state of the core–shell system. For some materials, the values of the thermal stresses are larger than their specific elastic limits and the materials begin to deform plastically in the cooling process. The presence of the induced anisotropy due to the plastic deformation modifies the magnetic domain structure and the magnetic behavior of the system. 展开更多
关键词 thermal stresses thermal equilibrium core–shell particle
在线阅读 下载PDF
Molecular dynamics study of thermal stress and heat propagation in tungsten under thermal shock 被引量:1
14
作者 付宝勤 赖文生 +4 位作者 袁悦 徐海燕 李纯 贾玉振 刘伟 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期376-382,共7页
Using molecular dynamics (MD) simulation, we study the thermal shock behavior of tungsten (W), which has been used for the plasma facing material (PFM) of tokamaks. The thermo-elastic stress wave, corresponding ... Using molecular dynamics (MD) simulation, we study the thermal shock behavior of tungsten (W), which has been used for the plasma facing material (PFM) of tokamaks. The thermo-elastic stress wave, corresponding to the collective displacement of atoms, is analyzed with the Lagrangian atomic stress method, of which the reliability is also analyzed. The stress wave velocity corresponds to the speed of sound in the material, which is not dependent on the thermal shock energy. The peak pressure of a normal stress wave increases with the increase of thermal shock energy. We analyze the temperature evolution of the thermal shock region according to the Fourier transformation. It can be seen that the “obvious” velocity of heat propagation is less than the velocity of the stress wave; further, that the thermo-elastic stress wave may contribute little to the transport of kinetic energy. The heat propagation can be described properly by the heat conduction equation. These results may be useful for understanding the process of the thermal shock of tungsten. 展开更多
关键词 molecular dynamics simulation thermal shock thermo-elastic stress heat propagation tungsten
在线阅读 下载PDF
Fiber Bragg grating monitors for thermal and stress of the composite insulators in transmission lines 被引量:6
15
作者 Heming Deng Wei Cai +3 位作者 You Song Jinsong Liu Christopher Redman Qiandong Zhuang 《Global Energy Interconnection》 2018年第3期382-390,共9页
Running composite insulators are prone to failure due to their harsh surrounding work environment, which directly affects the safe operation of transmission lines. This paper puts forward the method of using fiber Bra... Running composite insulators are prone to failure due to their harsh surrounding work environment, which directly affects the safe operation of transmission lines. This paper puts forward the method of using fiber Bragg grating(FBG) as the monitors to parameters correlated with thermal and stress of the composite insulators in transmission lines at working status. Firstly, monitoring points are found out by the mechanical test on composite insulator samples. Secondly, based on the monitoring theory, this paper introduces the feasibility design frame of the composite insulator with FBG implanted in the rod and the online monitor system. At last, it describes applications of this monitor system in the field of transmission lines. 展开更多
关键词 thermal monitoring stress monitoring Composite insulators Transmission lines Fiber Bragg grating monitors
在线阅读 下载PDF
An analytical model of thermal mechanical stress induced by through silicon via
16
作者 董刚 石涛 +1 位作者 赵颖博 杨银堂 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第5期444-450,共7页
We present an accurate through silicon via (TSV) thermal mechanical stress analytical model which is verified by using finite element method (FEM). The results show only a very small error. By using the proposed a... We present an accurate through silicon via (TSV) thermal mechanical stress analytical model which is verified by using finite element method (FEM). The results show only a very small error. By using the proposed analytical model, we also study the impacts of the TSV radius size, the thickness, the material of Cu diffusion barrier, and liner on the stress. It is found that the liner can absorb the stress effectively induced by coefficient of thermal expansion mismatch. The stress decreases with the increase of liner thickness. Benzocyclobutene (BCB) as a liner material is better than SiO2. However, the Cu diffusion barrier has little effect on the stress. The stress with a smaller TSV has a smaller value. Based on the analytical model, we explore and validate the linear superposition principle of stress tensors and demonstrate the accuracy of this method against detailed FEM simulations. The analytic solutions of stress of two TSVs and three TSVs have high precision against the finite element result. 展开更多
关键词 through silicon via finite element method (FEM) thermal mechanical stress
在线阅读 下载PDF
Micro thermal shear stress sensor based on vacuum anodic bonding and bulk-micromachining
17
作者 易亮 欧毅 +3 位作者 石莎莉 马瑾 陈大鹏 叶甜春 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第6期2130-2136,共7页
This paper describes a micro thermal shear stress sensor with a cavity underneath, based on vacuum anodic bonding and bulk micromachined technology. A Ti/Pt alloy strip, 2μm×100μm, is deposited on the top of a ... This paper describes a micro thermal shear stress sensor with a cavity underneath, based on vacuum anodic bonding and bulk micromachined technology. A Ti/Pt alloy strip, 2μm×100μm, is deposited on the top of a thin silicon nitride diaphragm and functioned as the thermal sensor element. By using vacuum anodic bonding and bulk-si anisotropic wet etching process instead of the sacrificial-layer technique, a cavity, functioned as the adiabatic vacuum chamber, 200μm×200μm×400μm, is placed between the silicon nitride diaphragm and glass (Corning 7740). This method totally avoid adhesion problem which is a major issue of the sacrificial-layer technique. 展开更多
关键词 thermal micro shear stress sensor vacuum anodic bonding bulk-micromachined
在线阅读 下载PDF
钢管混凝土拱温度效应的解析计算方法
18
作者 刘永健 闫新凯 +1 位作者 刘江 白永新 《中南大学学报(自然科学版)》 北大核心 2025年第1期283-296,共14页
将钢管混凝土拱的轴向温度效应按结构力学求解,横截面内温度效应按弹性力学平面应变问题求解,未考虑材料的泊松效应,且钢管混凝土拱并不完全满足平面应变问题假定。本文对钢管混凝土拱的温度荷载进行符合组合结构特点的合理简化,并提出... 将钢管混凝土拱的轴向温度效应按结构力学求解,横截面内温度效应按弹性力学平面应变问题求解,未考虑材料的泊松效应,且钢管混凝土拱并不完全满足平面应变问题假定。本文对钢管混凝土拱的温度荷载进行符合组合结构特点的合理简化,并提出三维温度应力解析计算方法,与传统方法和实体有限元计算结果进行对比验证。研究结果表明:不考虑横向约束解析法计算的轴向自应力偏小,相对误差在-31.67%~-30.24%之间,由于自应力在总的温度应力中占比较大,这一相对误差不可忽视;按平面应变问题计算钢-混界面法向应力误差在-17.96%~10.83%之间;本文提出考虑横向约束解析法计算精度较高,除应用于钢管混凝土拱温度效应计算外,还可用于评估界面热黏结状况及确定管内补偿收缩混凝土自由膨胀率的可行域;在相关桥规建议使用的材料性能取值和结构尺寸范围内,钢管与核心混凝土热脱黏界限温差在4.37℃~15.39℃之间。 展开更多
关键词 钢管混凝土拱 钢-混界面 三维温度应力 解析法 横向约束 脱黏 误差分析
在线阅读 下载PDF
高温煤岩液氮冷却后巴西劈裂破坏及声发射演化特征
19
作者 薛熠 张家辉 +5 位作者 刘嘉 时旭阳 蔡承政 张志镇 高峰 张云 《工程科学与技术》 北大核心 2025年第1期177-188,共12页
采用压裂技术提升煤层气储层渗透性是强化煤层气开发的重要途径。对于深部高温煤层气储层,液氮压裂技术通过在煤层中注入低温液氮形成显著热应力,基于冷冲击作用可实现对煤层气储层的致裂增渗。为研究液氮作用对高温煤岩的力学特性及损... 采用压裂技术提升煤层气储层渗透性是强化煤层气开发的重要途径。对于深部高温煤层气储层,液氮压裂技术通过在煤层中注入低温液氮形成显著热应力,基于冷冲击作用可实现对煤层气储层的致裂增渗。为研究液氮作用对高温煤岩的力学特性及损伤破裂特征的影响机制,对加热至不同温度条件下的煤样进行液氮冷却处理,通过波速测试和巴西劈裂测试,研究液氮对高温煤样波速、强度、声发射和裂纹演化等特征及破裂模式的影响机制。结果表明:高温煤样在液氮冷却作用后,力学性能出现了显著劣化,P波波速降低,超声频率分化严重,主频由51.10 kHz降至40.88 kHz。煤样逐渐由脆性破坏向延性破坏转变,巴西劈裂模量和脆性指数降幅最高分别为67%和75%。在巴西劈裂荷载下,煤样内部声发射信号均表现为低RA值、高AF值;煤样内部破坏形式主要为拉伸破坏,其次为剪切破坏。随着煤样初始温度的增加,煤样断裂面上形成多个起伏区域,3维形貌扫描的最大波峰与最大波谷高度差最高可达37.60 mm。液氮冷却诱导的微裂隙交叉扩展形成复杂的裂纹网络,进而导致局部失效区域的形成和煤样断裂面复杂化。表观裂纹分形维数在初始加热温度为100℃时达到最大值,由初始20℃时的0.50增加到1.83。研究结果可为深部高温煤层液氮压裂设计提供理论参考。 展开更多
关键词 液氮 煤岩 热应力 巴西劈裂 损伤
在线阅读 下载PDF
热-结构耦合作用下压电式力传感器热应力分析
20
作者 周远琴 李映君 +1 位作者 李宏宇 王桂从 《西安交通大学学报》 EI CAS 北大核心 2025年第1期194-205,共12页
针对极端环境下高温传感器的可靠性受限于热应力,导致传感器零漂和温漂甚至失效的问题,提出了一种基于热-结构耦合的高温压电式力传感器热应力计算方法及其有限元模型。基于平衡方程和热-弹性理论,建立了传感器热弹性力学物理方程,分析... 针对极端环境下高温传感器的可靠性受限于热应力,导致传感器零漂和温漂甚至失效的问题,提出了一种基于热-结构耦合的高温压电式力传感器热应力计算方法及其有限元模型。基于平衡方程和热-弹性理论,建立了传感器热弹性力学物理方程,分析了封装材料和温度对压电式力传感器热应力的影响规律。通过分析高温环境下压电式力传感器的热应力分布,确定传感器应力集中位置。对传感器热应力进行溯源,得到封装材料和晶组材料的热膨胀系数不一致导致热失配应力产生。将随机振动功率谱密度转换为加速度时域信号,利用多物理场耦合方法,分析得到传感器的最大热应力为134.61 MPa,小于材料的屈服强度300 MPa,验证了传感器在高温、高压和随机振动综合环境下具有良好的可靠性。通过研究氧化铝和氧化锆绝缘层对传感器最大热应力的影响,研究结果表明,温度为420℃时氧化铝绝缘层传感器的最大热应力比无绝缘层传感器的最大热应力小9.18 MPa,比氧化锆绝缘层传感器最大热应力小79.31 MPa,该工作可为高温环境下减小传感器热应力措施提供一定的参考。 展开更多
关键词 高温传感器 热应力 多物理场 压电
在线阅读 下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部