期刊文献+
共找到403篇文章
< 1 2 21 >
每页显示 20 50 100
Fault detection and health monitoring of high-power thyristor converter based on long short-term memory in nuclear fusion
1
作者 Ling ZHANG Ge GAO Li JIANG 《Plasma Science and Technology》 2025年第4期64-73,共10页
This research focuses on solving the fault detection and health monitoring of high-power thyristor converter.In terms of the critical role of thyristor converter in nuclear fusion system,a method based on long short-t... This research focuses on solving the fault detection and health monitoring of high-power thyristor converter.In terms of the critical role of thyristor converter in nuclear fusion system,a method based on long short-term memory(LSTM)neural network model is proposed to monitor the operational state of the converter and accurately detect faults as they occur.By sampling and processing a large number of thyristor converter operation data,the LSTM model is trained to identify and detect abnormal state,and the power supply health status is monitored.Compared with traditional methods,LSTM model shows higher accuracy and abnormal state detection ability.The experimental results show that this method can effectively improve the reliability and safety of the thyristor converter,and provide a strong guarantee for the stable operation of the nuclear fusion reactor. 展开更多
关键词 fault detection and health monitoring high-power supply thyristor converter long short-term memory(lstm) nuclear fusion(Some figures may appear in colour only in the online journal)
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
2
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural Network long short-term memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
State-of-health estimation for fast-charging lithium-ion batteries based on a short charge curve using graph convolutional and long short-term memory networks
3
作者 Yvxin He Zhongwei Deng +4 位作者 Jue Chen Weihan Li Jingjing Zhou Fei Xiang Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期1-11,共11页
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan.... A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively. 展开更多
关键词 Lithium-ion battery State of health estimation Feature extraction Graph convolutional network long short-term memory network
在线阅读 下载PDF
基于Bi‑LSTM和时序注意力的异常心音检测
4
作者 卢官明 蔡亚宁 +3 位作者 卢峻禾 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期12-20,共9页
异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧... 异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧处理,使用平均幅度差函数(Average Magnitude Difference Function,AMDF)和短时过零率(Short⁃Time Zero⁃Crossing Rate,STZCR)提取每帧心音信号的初始特征;然后将它们拼接后作为Bi⁃LSTM的输入,并引入时序注意力机制,挖掘特征的长期依赖关系,提取心音信号的上下文时域特征;最后通过Softmax分类器,实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016提供的心音公共数据集上对所提出的算法使用10折交叉验证法进行了评估,其准确度、灵敏度、特异性、精度和F1评分分别为0.9579、0.9364、0.9642、0.8838和0.9093,优于已有的其他算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,在心血管疾病的临床辅助诊断中具有潜在的应用前景。 展开更多
关键词 心音分类 平均幅度差函数 短时过零率 双向长短时记忆网络 时序注意力机制
在线阅读 下载PDF
基于改进CEEMD算法与优化LSTM的光伏功率预测
5
作者 许爱华 贾皓天 +1 位作者 王智煜 袁文俊 《吉林大学学报(信息科学版)》 2025年第2期451-460,共10页
为了更好地利用太阳能,准确预测光伏发电功率,提高光伏功率预测的精度,提出了一种基于因素相关互补集合经验模态分解算法(CEEMD:Complementary Ensemble Empirical Mode Decomposition)与优化长短期记忆网络(LSTM:Long Short-Term Memor... 为了更好地利用太阳能,准确预测光伏发电功率,提高光伏功率预测的精度,提出了一种基于因素相关互补集合经验模态分解算法(CEEMD:Complementary Ensemble Empirical Mode Decomposition)与优化长短期记忆网络(LSTM:Long Short-Term Memory network)结合的光伏功率预测方法。首先,使用CEEMD算法分解光伏功率时序,建立分解功率分量与环境因素的Pearson相关系数矩阵,每个分解功率分量选取3个关键因素作为后续预测的输入;其次,利用改进麻雀群搜索算法(ISSA:Improved Sparrow Search Algorithm)优化LSTM网络,建立ISSA-LSTM算法各光伏功率分量预测模型;然后,将各个分解模态的预测结果叠加重构;最后,结合南方某地光伏电站发电功率实测数据对所提方法进行验证,结果验证了所提方法的有效性与优越性。 展开更多
关键词 光伏功率预测 CEEMD算法 Pearson相关矩阵 ISSA-lstm算法
在线阅读 下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
6
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus long short-term memory recurrentneural network
在线阅读 下载PDF
基于SLSTM网络的两级修正机动目标跟踪方法
7
作者 汪晋 苏洪涛 +1 位作者 汪圣利 陆超 《西安电子科技大学学报》 北大核心 2025年第1期37-49,共13页
传统机动目标跟踪方法在机动模型建模方面,通过模型集自适应交互的方式,实现模型与目标真实运动的匹配。在跟踪非合作目标时,由于机动状态随时变化,且机动形式多样,当模型集内的有限个模型均无法精准表征其真实运动时,跟踪性能下降。将... 传统机动目标跟踪方法在机动模型建模方面,通过模型集自适应交互的方式,实现模型与目标真实运动的匹配。在跟踪非合作目标时,由于机动状态随时变化,且机动形式多样,当模型集内的有限个模型均无法精准表征其真实运动时,跟踪性能下降。将模型修正和状态修正两级神经网络融入到滤波递推过程中,提出一种基于堆叠长短时记忆(Stacked Long Short-Term Memory,SLSTM)网络的两级修正机动目标跟踪方法(Two Level Modified Maneuvering Target Tracking,TLM-MTT),第一级模型修正网络实时感知目标的机动,调整模型参数,实现机动模型的精准建模,第二级状态修正网络对状态估计进行实时补偿,提升滤波输出的精度。通过离线方式进行网络训练,训练后的网络用于在线实时跟踪,相较于传统方法和其他智能化滤波方法,文中所提方法对高机动目标跟踪具有更好的跟踪性能。 展开更多
关键词 目标跟踪 长短时记忆网络 卡尔曼滤波
在线阅读 下载PDF
Power entity recognition based on bidirectional long short-term memory and conditional random fields 被引量:9
8
作者 Zhixiang Ji Xiaohui Wang +1 位作者 Changyu Cai Hongjian Sun 《Global Energy Interconnection》 2020年第2期186-192,共7页
With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service respons... With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service response provision.Knowledge graphs are usually constructed based on entity recognition.Specifically,based on the mining of entity attributes and relationships,domain knowledge graphs can be constructed through knowledge fusion.In this work,the entities and characteristics of power entity recognition are analyzed,the mechanism of entity recognition is clarified,and entity recognition techniques are analyzed in the context of the power domain.Power entity recognition based on the conditional random fields (CRF) and bidirectional long short-term memory (BLSTM) models is investigated,and the two methods are comparatively analyzed.The results indicated that the CRF model,with an accuracy of 83%,can better identify the power entities compared to the BLSTM.The CRF approach can thus be applied to the entity extraction for knowledge graph construction in the power field. 展开更多
关键词 Knowledge graph Entity recognition Conditional Random Fields(CRF) Bidirectional long short-term memory(Blstm)
在线阅读 下载PDF
Logging-while-drilling formation dip interpretation based on long short-term memory 被引量:3
9
作者 SUN Qifeng LI Na +2 位作者 DUAN Youxiang LI Hongqiang TANG Haiquan 《Petroleum Exploration and Development》 CSCD 2021年第4期978-986,共9页
Azimuth gamma logging while drilling(LWD)is one of the important technologies of geosteering but the information of real-time data transmission is limited and the interpretation is difficult.This study proposes a meth... Azimuth gamma logging while drilling(LWD)is one of the important technologies of geosteering but the information of real-time data transmission is limited and the interpretation is difficult.This study proposes a method of applying artificial intelligence in the LWD data interpretation to enhance the accuracy and efficiency of real-time data processing.By examining formation response characteristics of azimuth gamma ray(GR)curve,the preliminary formation change position is detected based on wavelet transform modulus maxima(WTMM)method,then the dynamic threshold is determined,and a set of contour points describing the formation boundary is obtained.The classification recognition model based on the long short-term memory(LSTM)is designed to judge the true or false of stratum information described by the contour point set to enhance the accuracy of formation identification.Finally,relative dip angle is calculated by nonlinear least square method.Interpretation of azimuth gamma data and application of real-time data processing while drilling show that the method proposed can effectively and accurately determine the formation changes,improve the accuracy of formation dip interpretation,and meet the needs of real-time LWD geosteering. 展开更多
关键词 logging while drilling azimuth gamma stratigraphic identification artificial intelligence long short-term memory wavelet transform
在线阅读 下载PDF
Preliminary abnormal electrocardiogram segment screening method for Holter data based on long short-term memory networks 被引量:1
10
作者 Siying Chen Hongxing Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期208-214,共7页
Holter usually monitors electrocardiogram(ECG)signals for more than 24 hours to capture short-lived cardiac abnormalities.In view of the large amount of Holter data and the fact that the normal part accounts for the m... Holter usually monitors electrocardiogram(ECG)signals for more than 24 hours to capture short-lived cardiac abnormalities.In view of the large amount of Holter data and the fact that the normal part accounts for the majority,it is reasonable to design an algorithm that can automatically eliminate normal data segments as much as possible without missing any abnormal data segments,and then take the left segments to the doctors or the computer programs for further diagnosis.In this paper,we propose a preliminary abnormal segment screening method for Holter data.Based on long short-term memory(LSTM)networks,the prediction model is established and trained with the normal data of a monitored object.Then,on the basis of kernel density estimation,we learn the distribution law of prediction errors after applying the trained LSTM model to the regular data.Based on these,the preliminary abnormal ECG segment screening analysis is carried out without R wave detection.Experiments on the MIT-BIH arrhythmia database show that,under the condition of ensuring that no abnormal point is missed,53.89% of normal segments can be effectively obviated.This work can greatly reduce the workload of subsequent further processing. 展开更多
关键词 ELECTROCARDIOGRAM long short-term memory network kernel density estimation MIT-BIH ARRHYTHMIA database
在线阅读 下载PDF
基于多头LSTM模型的南疆枣树土壤墒情预测
11
作者 杨轶航 吕德生 +4 位作者 刘宁宁 王振华 李淼 张金珠 王东旺 《水资源与水工程学报》 北大核心 2025年第2期207-217,共11页
在南疆枣业生产中,准确预测土壤墒情对于优化作物种植质量和制定灌溉计划至关重要。通过建立高精度的土壤墒情预测模型,为南疆枣树的灌溉管理提供了科学依据。基于2021和2022年的全生育期枣树在20、40、60、80 cm土层的土壤墒情数据、... 在南疆枣业生产中,准确预测土壤墒情对于优化作物种植质量和制定灌溉计划至关重要。通过建立高精度的土壤墒情预测模型,为南疆枣树的灌溉管理提供了科学依据。基于2021和2022年的全生育期枣树在20、40、60、80 cm土层的土壤墒情数据、气象数据以及灌溉水量等小时级数据集,采用长短期记忆神经网络(LSTM)模型对各土层土壤墒情进行多步预测。引入了由4个单一LSTM模型组成的多头LSTM模型,旨在扩大预测范围并提高预测精度,并采用k折交叉验证结合麻雀搜索算法(SSA)对每个单一LSTM模型进行超参数调优,以提升模型的泛化能力和准确性。对各单一模型的输出进行加权平均,获得最终的预测结果。结果表明:在4个土层墒情均值数据集上,多头LSTM模型对未来1、12、24、48 h的土壤墒情预测的决定系数(R^(2))分别提升至0.951、0.932、0.870、0.815;多头LSTM模型可有效提升枣树土壤墒情的中长期预测精度,特别是在24和48 h的预测中,改进效果尤为明显,这为枣树的精细化灌溉管理提供了有力支持,可帮助农民更有效地利用水资源,减少浪费。 展开更多
关键词 土壤墒情预测 多头lstm 麻雀搜索算法 k折交叉验证 南疆滴灌骏枣
在线阅读 下载PDF
基于LSTM网络的轨道车辆基准轴速度预测方法
12
作者 孙卫兵 杨磊 方松 《中国铁路》 北大核心 2025年第1期92-99,共8页
滑行检测是列车制动系统防滑控制的关键技术,以真实轨道车辆制动系统的运行数据为样本进行特征分析,提出基于长短期记忆网络(LSTM)的列车基准轴速度预测方法。该方法根据车辆4个轴的实时速度及其邻近时刻的速度,对下一时间段的基准轴速... 滑行检测是列车制动系统防滑控制的关键技术,以真实轨道车辆制动系统的运行数据为样本进行特征分析,提出基于长短期记忆网络(LSTM)的列车基准轴速度预测方法。该方法根据车辆4个轴的实时速度及其邻近时刻的速度,对下一时间段的基准轴速度进行迭代预测。与常规基准轴速度估算方法相比,LSTM算法预测的基准轴速度在全轴滑行工况下更接近列车真实速度,可更早地检测到全轴滑行,有利于制动系统及时采取防滑控制措施或其他黏着控制,提高黏着利用率。 展开更多
关键词 轨道车辆 基准轴速度 列车制动 长短期记忆网络 神经网络 滑行检测 黏着控制
在线阅读 下载PDF
变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法 被引量:1
13
作者 李嘉波 王志璇 +1 位作者 田迪 孙中麟 《储能科学与技术》 北大核心 2025年第2期659-670,共12页
锂离子电池在电动汽车、可再生能源等领域广泛应用,对其剩余使用寿命(remaining useful life,RUL)进行精确预测,能够实时把握电池的内在性能退化状态,降低电池使用风险。本工作提出了一种基于变模态分解(variational mode decomposition... 锂离子电池在电动汽车、可再生能源等领域广泛应用,对其剩余使用寿命(remaining useful life,RUL)进行精确预测,能够实时把握电池的内在性能退化状态,降低电池使用风险。本工作提出了一种基于变模态分解(variational mode decomposition,VMD)、麻雀优化算法(sparrow search algorithm,SSA)和长短期记忆网络(long short-term memory,LSTM)的组合预测算法对锂离子电池剩余寿命进行预测。首先,基于锂离子电池电流、电压以及温度曲线,提取等压差充电时间、等压差充电能量、放电温度峰值和恒流充电时间作为预测RUL的间接健康因子。其次,采用变模态分解法分解容量以避免容量回升的局部波动和测试噪声对RUL预测结果造成干扰。针对传统LSTM模型超参数设置易受到经验和随机性的影响,提出了麻雀优化算法对LSTM模型参数进行优化,以提升模型的预测能力。最后,应用NASA和CALCE数据集,将所提模型与其他模型进行对比。实验结果表明,锂离子电池RUL预测均方根误差控制在2%以内,所提方法具有较高的预测性能。 展开更多
关键词 锂离子电池 剩余使用寿命 变模态分解 麻雀优化算法 长短期记忆网络
在线阅读 下载PDF
基于CNN框架的LSTM融合优化模型用于芒果干物质的近红外光谱分析
14
作者 林雪梅 蔡肯 +3 位作者 黄家立 蒙芳秀 林钦永 陈华舟 《分析测试学报》 北大核心 2025年第6期1176-1182,共7页
芒果中的干物质(DM)含量是评判芒果品质的重要指标之一。该文利用近红外光谱法(NIR)检验和预测芒果的干物质含量。主要基于卷积神经网络(CNN)框架,研究其结构参数网格数值化筛选方案,融入长短期记忆网络(LSTM)完成参数协同优化,构建CNN-... 芒果中的干物质(DM)含量是评判芒果品质的重要指标之一。该文利用近红外光谱法(NIR)检验和预测芒果的干物质含量。主要基于卷积神经网络(CNN)框架,研究其结构参数网格数值化筛选方案,融入长短期记忆网络(LSTM)完成参数协同优化,构建CNN-LSTM融合优化模型。实验过程中,通过构建浅层CNN建模框架,针对CNN-LSTM模型的核心参数进行局部规模的超参数联合调试。模型训练和模型测试结果显示,CNN模型和CNN-LSTM模型的最优化预测结果均明显优于常规的线性或非线性模型。该研究除了确定最优模型以外,还提供了更多可选的模型优化参数组合,有望在芒果的生产和培育过程中得到应用。浅层CNN框架融合LSTM优化模型及其参数网格数值化筛选方案能够为快速检测芒果果实中的干物质含量提供化学计量学技术支持。 展开更多
关键词 近红外(NIR) 芒果干物质 卷积神经网络(CNN) 长短期记忆网络(lstm) 参数优选 网格数值化
在线阅读 下载PDF
基于SVM-SARIMA-LSTM模型的城市用水量实时预测
15
作者 李轩 吴永强 +2 位作者 王佳伟 杨伟超 张天洋 《水电能源科学》 北大核心 2025年第3期36-39,6,共5页
为提高气象波动下城市用水量预测精度,通过季节性分解的趋势—季节性—残差程序(STL)将城市时用水量分解为趋势分量、季节性分量和残差分量3部分,使用季节性自回归移动平均模型(SARIMA)对季节性部分进行捕捉,利用支持向量机(SVM)提取趋... 为提高气象波动下城市用水量预测精度,通过季节性分解的趋势—季节性—残差程序(STL)将城市时用水量分解为趋势分量、季节性分量和残差分量3部分,使用季节性自回归移动平均模型(SARIMA)对季节性部分进行捕捉,利用支持向量机(SVM)提取趋势部分与气温、降水、风速、气压和相对湿度5个气象因素之间的关系,利用长短时记忆网络(LSTM)对波动性明显的残差部分进行关系捕捉,构建了SVM-SARIMA-LSTM用水量实时预测模型,并利用衡水市3个月时用水量数据和气象数据训练SVM-SARIMA-LSTM模型,以随后1周的实测数据作为验证集对模型预测性能进行评估。结果表明,SVM-SARIMA-LSTM模型的平均绝对百分比误差(E_(MAP))比SARIMA模型低4.502%,均方根误差(E_(RMSE))降低了39.084%,确定系数R^(2)提高了9.965%,最大绝对误差(E_(maxA))减小了55.946%,具有较好的应用价值。所建模型通过整合关键气象因素,准确地捕捉到城市用水量的季节性趋势及非季节性波动,展现了优良的泛化性。 展开更多
关键词 SARIMA模型 支持向量机 长短时记忆神经网络 SVM-SARIMA-lstm模型 STL分解程序 气象因素 用水量预测
在线阅读 下载PDF
基于BO-LSTM的排露沟流域气象水文演变分析及径流预测模型建立
16
作者 康永德 陈佩 +3 位作者 许尔文 任小凤 敬文茂 张娟 《水利水电技术(中英文)》 北大核心 2025年第4期1-11,共11页
【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温... 【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温对径流量变化的影响,并建立了BO-LSTM排露沟流域径流预测模型。【结果】结果显示:(1)2000—2019年排露沟流域降水、气温和径流呈现两段式的上升趋势,分界点在2010年,降水和径流,第一阶段上升趋势均高于第二阶段,斜率依次为10.74、3.16;气温则相反,第二阶段高于第一阶段,斜率为0.11。并且降水、气温和径流的MK突变检验z值均大于0。(2)降水量在5—10月对径流量变化的贡献率较大;而气温在12月—次年4月对径流变化的贡献率大。(3)排露沟流域气温主要有3 a、14 a两个主周期,其中第一主周期为14 a;径流存在19 a、9 a和3 a三个主周期,其中第一主周期为19 a;降水主要存在4 a、11 a两个主周期,第一主周期为11 a。(4)BO-LSTM排露沟径流预测模型,精度R 2为0.63,均方根误差为14047 m 3,模型在径流量较小月份的预测精度大于径流量较大的月份。【结论】近20年来排露沟流域的降水、气温及径流均呈上升趋势;排露沟流域径流、降水及气温均存在明显的周期性;气温和降水是影响排露沟流域径流的重要因素;径流预测模型可以适用于排露沟流域。上述研究结果为祁连山水资源效应研究和内陆河流域水资源预测提供科学支撑。 展开更多
关键词 水文 水资源 径流演变 排露沟流域 径流预测 神经网络 lstm(long short-term memory)模型 贝叶斯优化算法
在线阅读 下载PDF
基于HMM+LSTM算法的网纹蜜瓜数字孪生体生长模型设计
17
作者 陆棚 刘明堂 +5 位作者 吴姗姗 李斌 李世豪 王长春 杨阳蕊 江恩慧 《灌溉排水学报》 2025年第5期122-132,共11页
【目的】提高农业水资源利用效率,开展农作物生长过程全生命周期的数字孪生体构建,加快我国智慧农业进程、助力农民制订优化管理策略。【方法】以网纹蜜瓜为例,选取河南省花园口引黄灌区为典型研究区,在相应气候条件下开展网纹蜜瓜生长... 【目的】提高农业水资源利用效率,开展农作物生长过程全生命周期的数字孪生体构建,加快我国智慧农业进程、助力农民制订优化管理策略。【方法】以网纹蜜瓜为例,选取河南省花园口引黄灌区为典型研究区,在相应气候条件下开展网纹蜜瓜生长全过程室内试验,基于物联网技术的观测网络,获取了网纹蜜瓜生长过程各项环境指标和生长状态实时监测数据;采用3ds Max三维建模软件和Unity 3D可视化平台,开发了网纹蜜瓜数字孪生模型,采用隐马尔可夫(Hidden Markov Model,HMM)和长短期记忆网络(Long Short-Term Memory,LSTM)算法,构建了网纹蜜瓜生长过程智能化推演模型。【结果】模拟结果表明,网纹蜜瓜种、苗、花、叶、果不同生长周期的数字孪生体整体识别正确率较高,其中种周期与苗周期准确率为85.3%,网纹蜜瓜叶周期的准确率为78.6%,平均周期准确率为82.8%。【结论】本文提出的基于无线传感器网络的数据采集端系统、HMM+LSTM算法生成网纹蜜瓜孪生体三维生长模型,实现了智慧农业的精准、高效、非破坏性可视化全过程孪生模拟,可推广应用于其他农作物孪生体构建。 展开更多
关键词 数字孪生 网纹蜜瓜 隐马尔可夫模型HMM 长短期记忆网络算法lstm 智慧农业
在线阅读 下载PDF
基于STL-MIKE-LSTM联合建模的陈行水库盐度快速预测
18
作者 吴畅 崔婧嫄 +4 位作者 黄帆 宋辰煜 张晟 赵蓬勃 张海平 《净水技术》 2025年第5期57-68,186,共13页
【目的】该研究欲探究使用神经网络模型替代湖泊水库非线性水文水质过程机理模型的可行性,实现快速计算在咸潮入侵期间不同取水条件下的输水水质。【方法】该研究提出了一种基于联合建模的氯化物输水浓度预测方法。该方法使用周期趋势... 【目的】该研究欲探究使用神经网络模型替代湖泊水库非线性水文水质过程机理模型的可行性,实现快速计算在咸潮入侵期间不同取水条件下的输水水质。【方法】该研究提出了一种基于联合建模的氯化物输水浓度预测方法。该方法使用周期趋势分解算法(STL)分解提取取水浓度波动特征,基于高斯噪声进行数据增强以构建合成样本,并生成模拟工况方案,交由MIKE 21机理模型计算,最终将计算结果用于训练长短期记忆(LSTM)神经网络模型。【结果】该研究将该方法施用于陈行水库,结果如下:(1)探究不同参数下STL分解的时序特征提取效果,发现选择周期参数(n_(p))=12使STL分解的效果较好;(2)对比不同隐藏层神经元个数与预测步长下LSTM模型的预测效果,发现预测效果随神经元个数增加先升后降,随预测步长增加持续下降,选取神经元个数为128与预测步长为24 h的总体效果较好;(3)对比不同结构神经网络的预测能力,发现LSTM在预测集预测效果最佳[均方根误差(RMSE)=0.13 mg/L,平均相对误差(MRE)=0.04,纳什效率系数(NSE)=0.96];(4)使用实际实测数据与预报数据验证LSTM模型,发现其对预测氯化物输水浓度具备较高精度(RMSE=0.29 mg/L,MRE=0.09,NSE=0.58),且所需算力与时间远低于MIKE 21机理模型。【结论】该研究提出的湖泊水库氯化物输水浓度预测方法经验证同时具备较高计算精度与速度,能够替代机理模型为水库管理者应对咸潮入侵提供快速决策支持。 展开更多
关键词 咸潮 长短期记忆(lstm) 周期趋势分解算法(STL) 数据增强 MIKE 21
在线阅读 下载PDF
基于CPO-LSTM的顶吹炉粉尘浓度时序预测模型
19
作者 陈毅 董明荣 +1 位作者 张涛 王舰 《陕西理工大学学报(自然科学版)》 2025年第3期70-78,共9页
为了精准预测顶吹炉粉尘浓度,采用冠豪猪优化算法(CPO)优化长短时记忆(LSTM)网络,提出了一种基于CPO-LSTM的顶吹炉粉尘浓度时序预测模型。设计并搭建了粉尘实验平台以获取粉尘浓度数据;对比分析了LSTM经过CPO优化前后的模型预测性能,验... 为了精准预测顶吹炉粉尘浓度,采用冠豪猪优化算法(CPO)优化长短时记忆(LSTM)网络,提出了一种基于CPO-LSTM的顶吹炉粉尘浓度时序预测模型。设计并搭建了粉尘实验平台以获取粉尘浓度数据;对比分析了LSTM经过CPO优化前后的模型预测性能,验证了CPO在改善过拟合问题上的优势;利用CPO优化了LSTM的学习率、隐藏层节点数和正则化系数,将得到的最佳参数输入LSTM网络模型中,输出预测结果。并将CPO-LSTM模型与LSTM、灰狼算法优化长短时记忆(GWO-LSTM)、蜣螂算法优化长短时记忆(DBO-LSTM)三种顶吹炉粉尘浓度时序预测模型进行了数据对比,CPO-LSTM预测模型较LSTM、GWO-LSTM、DBO-LSTM模型的均方根误差分别降低了9.5%、18.9%、22.9%;绝对百分比误差分别下降了78%、43%、30%;决定系数分别提高了8.2%、6.5%、4.5%;皮尔逊系数分别提高了4.3%、3%、4%。结果表明,基于CPO-LSTM的时序预测模型能够有效预测顶吹炉粉尘浓度。 展开更多
关键词 顶吹炉 粉尘浓度 时序预测 冠豪猪优化算法 长短时记忆 优化
在线阅读 下载PDF
Device-Free Through-the-Wall Activity Recognition Using Bi-Directional Long Short-Term Memory and WiFi Channel State Information
20
作者 Zi-Yuan Gong Xiang Lu +2 位作者 Yu-Xuan Liu Huan-Huan Hou Rui Zhou 《Journal of Electronic Science and Technology》 CAS CSCD 2021年第4期357-368,共12页
Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated dev... Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated devices.As human bodies and their movements have influences on WiFi propagation,this paper proposes the recognition of human activities by analyzing the channel state information(CSI)from the WiFi physical layer.The method requires only the commodity:WiFi transmitters and receivers that can operate through a wall,under LOS and non-line of sight(NLOS),while the targets are not required to carry dedicated devices.After collecting CSI,the discrete wavelet transform is applied to reduce the noise,followed by outlier detection based on the local outlier factor to extract the activity segment.Activity recognition is fulfilled by using the bi-directional long short-term memory that takes the sequential features into consideration.Experiments in through-the-wall environments achieve recognition accuracy>95%for six common activities,such as standing up,squatting down,walking,running,jumping,and falling,outperforming existing work in this field. 展开更多
关键词 Activity recognition bi-directional long short-term memory(Bi-lstm) channel state information(CSI) device-free through-the-wall.
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部