English online learning has been common trend in the world, how to teach and learn effectively in EFL classes through online environment is an urgent study. The purpose of the study to analyze the factors of affecting...English online learning has been common trend in the world, how to teach and learn effectively in EFL classes through online environment is an urgent study. The purpose of the study to analyze the factors of affecting the effectiveness of online teaching and learning in EFL classes in college. We build up a three-dimensional model in the perspective of teacher, learner and technology. And we propose the strategies of improving the effectiveness of online teaching and learning in EFL classes in college in the dimensions of teacher, learner and technology.展开更多
Remote sensing cross-modal image-text retrieval(RSCIR)can flexibly and subjectively retrieve remote sensing images utilizing query text,which has received more researchers’attention recently.However,with the increasi...Remote sensing cross-modal image-text retrieval(RSCIR)can flexibly and subjectively retrieve remote sensing images utilizing query text,which has received more researchers’attention recently.However,with the increasing volume of visual-language pre-training model parameters,direct transfer learning consumes a substantial amount of computational and storage resources.Moreover,recently proposed parameter-efficient transfer learning methods mainly focus on the reconstruction of channel features,ignoring the spatial features which are vital for modeling key entity relationships.To address these issues,we design an efficient transfer learning framework for RSCIR,which is based on spatial feature efficient reconstruction(SPER).A concise and efficient spatial adapter is introduced to enhance the extraction of spatial relationships.The spatial adapter is able to spatially reconstruct the features in the backbone with few parameters while incorporating the prior information from the channel dimension.We conduct quantitative and qualitative experiments on two different commonly used RSCIR datasets.Compared with traditional methods,our approach achieves an improvement of 3%-11% in sumR metric.Compared with methods finetuning all parameters,our proposed method only trains less than 1% of the parameters,while maintaining an overall performance of about 96%.展开更多
文摘English online learning has been common trend in the world, how to teach and learn effectively in EFL classes through online environment is an urgent study. The purpose of the study to analyze the factors of affecting the effectiveness of online teaching and learning in EFL classes in college. We build up a three-dimensional model in the perspective of teacher, learner and technology. And we propose the strategies of improving the effectiveness of online teaching and learning in EFL classes in college in the dimensions of teacher, learner and technology.
基金supported by the National Key R&D Program of China(No.2022ZD0118402)。
文摘Remote sensing cross-modal image-text retrieval(RSCIR)can flexibly and subjectively retrieve remote sensing images utilizing query text,which has received more researchers’attention recently.However,with the increasing volume of visual-language pre-training model parameters,direct transfer learning consumes a substantial amount of computational and storage resources.Moreover,recently proposed parameter-efficient transfer learning methods mainly focus on the reconstruction of channel features,ignoring the spatial features which are vital for modeling key entity relationships.To address these issues,we design an efficient transfer learning framework for RSCIR,which is based on spatial feature efficient reconstruction(SPER).A concise and efficient spatial adapter is introduced to enhance the extraction of spatial relationships.The spatial adapter is able to spatially reconstruct the features in the backbone with few parameters while incorporating the prior information from the channel dimension.We conduct quantitative and qualitative experiments on two different commonly used RSCIR datasets.Compared with traditional methods,our approach achieves an improvement of 3%-11% in sumR metric.Compared with methods finetuning all parameters,our proposed method only trains less than 1% of the parameters,while maintaining an overall performance of about 96%.